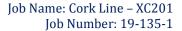


Cork Line Level Crossings – XC201 Ground Investigation

Primary Author: Ian Holley


Client: Irish Rail

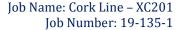
Client's Representative: JACOBS

Report Date: 25th November 2020

Report No.: OCB19-135-1

File Location: OCB19-135-1/Reporting/XC201

CONTENTS


Document	Control	Sheet
----------	---------	-------

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY	1
2	SCOI	PE	1
3	DESC	CRIPTION OF SITE	1
4	SITE 4.1	OPERATIONSBoreholes	2
		4.1.1 Cable Percussion Boreholes	2
	4.2	4.1.2 Boreholes by Combined Percussion Boring and Rotary Follow-On Drilling Standpipe Installations	
	4.3	Trial Pits	4
	4.4	Indirect CBR Tests	4
	4.5	Water Purging	5
	4.6	Surveying	
5	LAB	ORATORY WORK	6
	5.1	Geotechnical Laboratory Testing of Soils	6
	5.2	Environmental Laboratory Testing of Soils	6
6	GRO	UND CONDITIONS	7
	6.1	General Geology of the Area	7
	6.2	Ground Types Encountered During Investigation of the Site	7
	6.3	Groundwater	7
7	DISC	CUSSION	8
	7.1	Proposed Construction	8
8	REF	ERENCES	9

APPENDICES

Appendix A	Site and Exploratory Hole Location Plans
Appendix B	Borehole Logs
Appendix C	Trial Pit Logs
Appendix D	Trial Pit Photographs
Appendix E	Indirect CBR Test Results
Appendix F	Water Purging Data & Logs
Appendix G	Geotechnical Laboratory Test Results
Appendix H	Environmental Laboratory Test Results
Appendix I	Pre & Post Site Condition Photographs

Document Control Sheet

Report No.: OCB19-135-1

Project title: Cork Line Level Crossings – XC201

Client: Irish Rail

Client's Representative: JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft	Ian Holley	Glen Byrne	Michael O'Connell	1st October 2020
002	Final Factual	Ian Holley	Glen Byrne	Michael O'Connell	25 th November 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design - Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

U	Nominal 100mm diameter undisturbed open tube sample
P	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
D	Small disturbed sample
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (C)	Standard penetration test using 60-degree solid cone
x,x/x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations rela	nting to rock core – reference Clause 44.4.4 of BS 5930: 1999
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.

Cork Line Level Crossings - XC201

1 AUTHORITY

On the instructions of JACOBS on behalf of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

This report details the work carried out both on site at XC201 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail and JACOBS in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included boreholes, trial pits, indirect CBR testing, installation of standpipes, water purging, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC201 is located in the Thomastown townland, 4.9km southeast of Charleville, Co. Cork. An unnamed road crosses the Dublin-Cork railway line approximately 200m east of the N20. The level crossing is currently manned with a house and cabin located adjacent to the east of the railway line. The site is surrounded by agricultural land with a number of residential homes and farms in the area.

The site is relatively flat throughout. The main works areas are within agricultural fields, some may be marshy depending on weather conditions.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 5th June 2020 and 7th August 2020, included:

- Three (3) Cable Percussion Boreholes
- Three (3) Cable Percussion with Rotary follow-on Boreholes
- A Standpipe Installation in two (2) Boreholes
- Four (4) Trial Pits
- Indirect CBR tests at eight (8) locations
- Water Purging in two (2) locations

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Boreholes

A total of six boreholes were put down in a minimum diameter of 150mm through soil strata to their completion depths by a combination of methods, including cable percussion boring by Pilcon rigs, and rotary drilling by a T44 rig.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

Appendix B presents the borehole logs.

4.1.1 Cable Percussion Boreholes

Three boreholes (CP01, CP01A & CP02) were put down to completion in minimum 200mm diameter using a Pilcon cable percussion soil boring rig. All boreholes were terminated either at their scheduled

completion depths, on instruction from a Jacobs engineer or else on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.1.2 Boreholes by Combined Percussion Boring and Rotary Follow-On Drilling

Three boreholes (CPRC01, CPRC01A & CPRC02) were put down by a combination of cable percussion boring and rotary follow-on open hole drilling techniques. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/obstruction.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals throughout the overburden using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

No rock core recovered.

Appendix B presents the borehole logs.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in boreholes CPRC01A and CPRC02.

Details of the installations, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole logs.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on four occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Trial Pits

Four trial pits (TP01–TP04) were excavated using a 15t tracked excavator fitted with a 600mm wide bucket, to depths between 2.70m and 3.60m. The trial pits were all terminated upon encountering obstructions or upon the pit walls collapsing.

Environmental samples were taken at depths of 0.05m, 0.50m, 1.0m and 3.0m in each trial pit.

Disturbed (small tub and bulk bag) samples were taken at standard depth intervals and at change of strata.

Hand Vane testing was a tempted unsuccessfully due to the relatively high granular content of the strata.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arising provided in Appendix D.

4.4 Indirect CBR Tests

An indirect CBR test was conducted at eight locations (CBR-TP01-1 to CBRTP04-2) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix E in the form of plots of the variation with depth of the cumulative blow count. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, as proposed by DTP Interim Advice Note 73/06 (Design Guidance for Road Pavement Foundations):

Log CBR = 2.48-1.057 Log (mm/blow)

The occasionally elevated CBR values could be a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.5 Water Purging

Prior to sampling from each standpipe (in CPRC01A and CPRC02) water purging was carried out.

Appendix F presents the water purging data logs.

4.6 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in appendix I.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **soil chemistry:** pH, Ammonia content, Chloride content, Nitrate content, Sulphur content and water-soluble and total sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix G.

5.2 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix H.

6 GROUND CONDITIONS

6.1 General Geology of the Area

Teagasc soil mapping indicates that the Thomastown area is underlain by Glacial Till derived chiefly from Devonian sandstones.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Lower Carboniferous-age undifferentiated Visean Limestones. The Lower Carboniferous strata were subjected to compressional deformation (tectonic shortening) during the Variscan Orogeny in Late Carboniferous and Early Permian times. Bedrock strata in the site vicinity typically strike west-southwest to east-northeast with variable dips having undergone folding and faulting.

The site is underlain by a locally important aquifer, consisting of bedrock which is moderately productive only in local zones, and has a moderate groundwater vulnerability. Numerous Karst features, such as depressions, swallow holes, caves and springs, occur in the valley underlain by limestones to the north-northwest of the Ballyhoura Mountains.

Note: Bedrock level assumed approximately >30m bgl based on a historic ground investigation in the area.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 200mm thickness, with topsoil and subsoil extending to 400mm depth noted in the Trial Pits.
- Glacial Till: Sandy gravelly silty clay, frequently with cobble and boulder content, typically soft or firm in upper horizons, becoming very stiff with increasing depth.
- Bedrock: Rockhead was not encountered to a maximum depth of 19.70m in CPRC02.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater monitoring to date in standpipe installations, yielded the following results:

Data	Depth to standing water level (m)									
Date	CPRC01A	CPRC02								
13/08/20	0.63	0.92								
17/08/20	0.5	0.86								
21/08/20	0.2	0.31								
29/09/20	0.795	1.06								

Continued monitoring of the two installed standpipes will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

8 REFERENCES

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. Eurocode 7 - Geotechnical design - Part 1 General Rules. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. Code of practice for ground investigations. British Standards Institution, London.

BS EN ISO 14688-1: 2002. Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution, London.

BS EN ISO 14689-1: 2003. *Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description*. British Standards Institution, London.

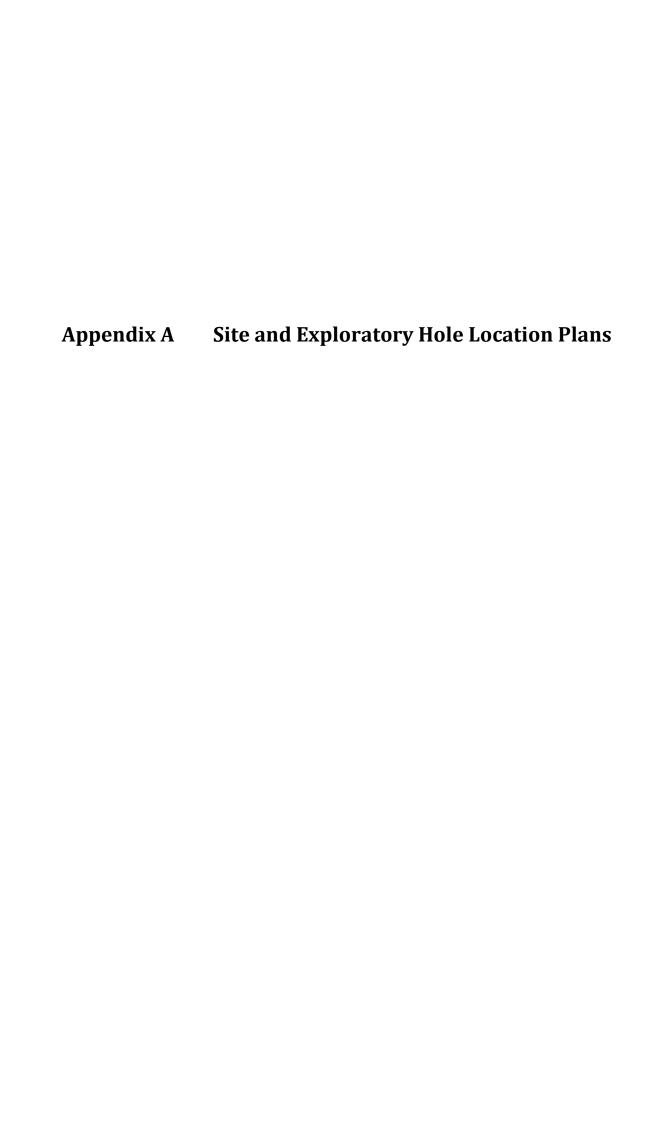
Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

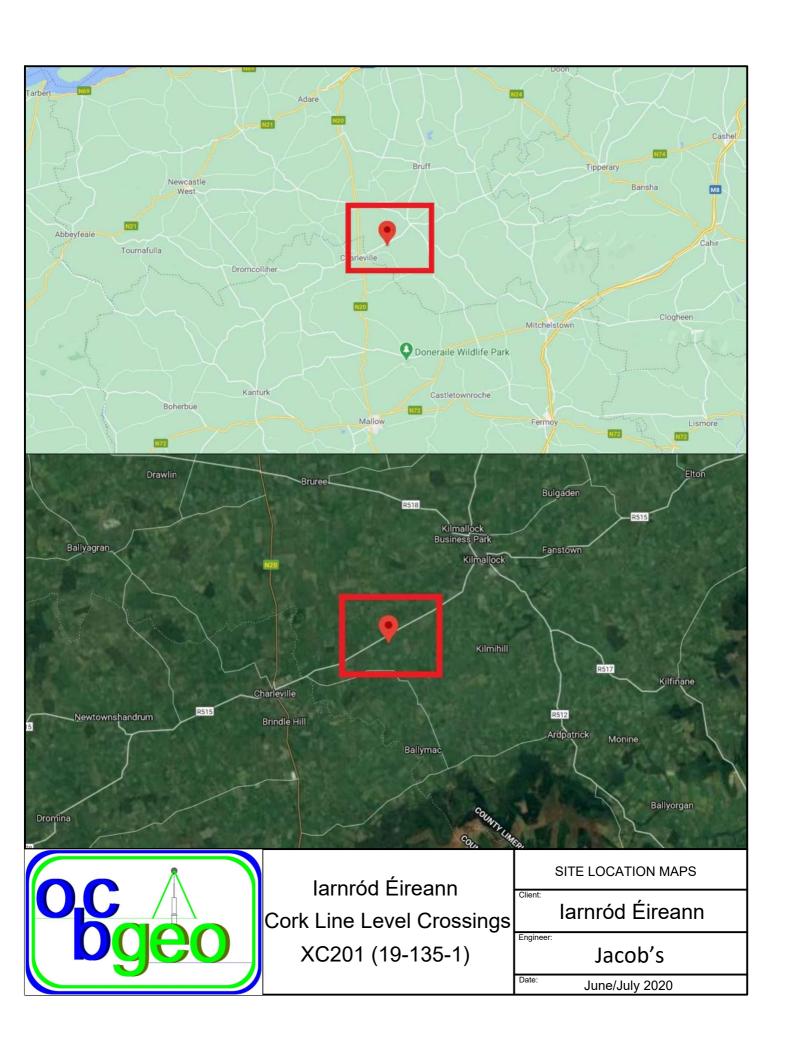
Building Research Establishment, 2007. BRE Digest 365: Soakaways.

BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017.

http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/


Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015


https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA Waste Classification 2015 Web. pdf

Environment Agency UK (2009). Soil Guideline Values (SGVs).

https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/

Exploratory Hole Locations

Client: larnród Éireann

Engineer Jacob's

June/July 2020

		8		<u> </u>	Project	No.:	Project	Name:	Bor	ehole I	No.:
0					19-135		Cork Li	ne Level Crossings	xc	201-CI	P01
	DO	e (Coordi		Client:		Sh	eet 1 d	of 1
	<u> </u>			<i>)</i>	557500	J., Z L		l Éireann / Irish Rail			
Method: Cable Percussion	on				624573	ו א כח כ	JACOBS	s Representative:	Scal	e: 1:	50
Plant:					Ground		Dates:		Dril	ler: A/	4
Pilcon) mOD		05/06/2020 - 05/06/2020	Log	ger: IH	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill	
0.05 0.20 - 1.20 0.20 - 1.20 0.50	ES1 B2 D3 ES4				80.40	(0.20)	X	TOPSOIL Firm light greyish brown with some yellow mottling slightly sandy slightly gravelly silty CLAY with frequent rootlets. Sand is fine to coarse. Gravel is			0.5
						(1.00)	^ × ×	fine to coarse, subangular to subrounded.			1.0
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B5 D6 SPT (C) N=9 ES7			N=9 (2,1/2,2,3,2)	79.40	(0.80)	* * * * * * * * * * * * * * * * * * * *	Firm light brown modeled grey slightly sandy gravelly SILT with low to medium cobble content and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders are subrounded.			1.5 —
2.00 - 2.45	SPT (C) N=7			N=7 (3,2/1,2,2,2)	78.60	2.00	(* * * * * * * * *	End of borehole at 2.000m			2.0 —
											2.5 —
						- - - - -					3.0
											3.5 —
						-					4.5
						-					5.0 —
						-					5.5 —
						- - - -					6.0 -
											6.5 —
						- - - -					7.0 -
											7.5 —
											8.0 — — — — 8.5 —
											9.0
						-					9.5 —
						-		Water Added Water S	tribe.	Gono'	
Remarks Instructed by clie	ents engir	neer '	to rel	ocate borehole at 2.	.00m.			From (m) To (m) Struck at (m) Casing	to (m) T	me (min) Ro	se to (m)
									lling D To (m)		hh:mm)

()		Project	No.:	Project Name:				No.:			
0	.C	\bigwedge			19-135		Cork Lii	ne Level Crossings	XC2	01-CP	01A
	DO	e (Coordi	nates:	Client:		Shi	eet 1 d	of 1
	3)		_		l Éireann / Irish Rail			
Method:						N	Client's	s Representative:	Scale	: 1:	50
Cable Percussion	on					IN	JACOBS	5	Drill	er: A/	Δ .
Plant:					Ground	l Level:	Dates:				-
Pilcon Depth	Sample /	Casing	Water		Level	mOD Depth (m)		08/06/2020 - 08/06/2020		er: IH	
(m)	Tests	Casing Depth (m)	Depth (m)	Field Records	(mOD)	(Thickness)	Legend	Description	Water	ackfill	
0.20 - 1.20	B1					- (0.20) - 0.20		TOPSOIL Brown slightly silty slightly sandy slightly gravelly CLAY with frequent			=
0.20 - 1.20 0.50	D2 ES3						× × .	rootlets and low cobble content. Sand is fine to coarse. Gravel is fine to			0.5
0.30	E33					(1.00)	× - 0	coarse, subangular to subrounded. Cobbles are subrounded.			0.3
						- ` ′	<u> </u>				=
1.20 - 2.00	B4					- - 1.20	X			// \ \ \ / / /	1.0
1.20 - 2.00	D5					- 1.20	×	Soft brown slightly silty slightly sandy slightly gravelly CLAY with frequent rootlets and medium cobble content. Sand is fine to coarse. Gravel is fine			_
1.20 - 1.65	SPT (C) N=7			N=7 (1,1/2,1,2,2)		- (0.80)	0-0-	to coarse, subangular to subrounded. Cobbles are subangular to			1.5 —
1.50	ES6						× × 0	subrounded.			=
2.00 - 3.00	B7					- 2.00	×-0-	Soft to Firm greyish brown slightly sandy slightly gravelly silty CLAY with	1		2.0 —
2.00 - 3.00 2.00 - 2.45	D8 SPT (C)			N=7 (2,2/1,2,2,2)		-	0 × 0	low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded.			
	N=7					(1.00)	× × .	sabangalar to subrounded. Combies are subrounded.			2.5
						-	×				_
3.00	ES9					- - 3.00	÷	Very Stiff greyish brown slightly sandy silty gravelly CLAY with high cobble			3.0 —
3.00 - 3.40 3.00 - 3.40	B10 D11					(0.40)	\$50 \$0 \$0 8	and medium boulder content. Sand is fine to coarse. Gravel is fine to			3
3.00 - 3.40	SPT (C)			N=48 (1,1/48 for		3.40	- m' 25 8 .	coarse, subangular to subrounded. Cobbles and boulders are subangular to subrounded, grey Limestone.	▎▐▘		3.5 —
3.40 - 3.40	SPT (C)			255mm) 50 (25 for 0mm/50		-		End of borehole at 3.400m			
				for 0mm)		-					4.0 —
						-					
						-					_ =
											4.5 —
						-					
						-					5.0 —
											3
						-					5.5 —
						-					
						-					6.0 —
						-					
											6.5
						-					
						-					7.0 —
						-					7.5 —
]
						-					8.0 —
						-					=
											8.5 —
						-					-
						-					=
											9.0 —
						-					
											9.5 —
						-					=
									Ш		
Remarks								Water Added Water S From (m) To (m) Struck at (m) Casing			se to (m)
									lling De		
								To (m) Diam (mm) From (m) 3.40 200 3.40	To (m) 3.40		hh:mm) 1:00
Cable Percussion	termina	ted a	t 3.40	Om due to probable	boulder	obstruction					

			<u> </u>	Project	No.:	Project	: Name:	Во	rehole	No.:	
).C /		1	19-135		Cork Li	ne Level Crossings	X	C201-C	CP02	
	DOG	20		Coordi	nates:	Client:		ς.	heet 1	of 1	
	3		<u>/</u>	55755	2.80 E		l Éireann / Irish Rail				
Method: Cable Percuss	ion			62445	8.19 N		s Representative:	Sca	ile: 1	:50	
	JON					JACOBS	5	Dri	ller: A	A	
Plant: Pilcon					d Level: 1 mOD	Dates:	10/06/2020 - 10/06/2020	Logger: IH			
Depth	Sample /	Casing Water Depth Depth	Field Records	Level	Depth (m)	Legend	Description	Water	Backfill	1	
(m) 0.05	Tests ES1	(m) (m)	Field Records	(mOD)	(Thickness)	Legenu	TOPSOIL	Wa	Dackiiii W///W/	<u>'</u>	
0.20 - 1.20 0.20 - 1.20 0.50 1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B2 D3 ES4 B5 D6 SPT (C)		N=26 (1,1/4,11,7,4)	82.11	(0.20) - 0.20 - (1.00) - (1.00) - 1.20		Light brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded. Stiff brown slightly sandy slightly gravelly silty CLAY with low cobble content and occasional rootlets. Sand is fine to coarse. Gravel is fine to			0.5 -	
1.50 2.00 - 2.20 2.00 - 2.20	N=26 ES7 B8		N-20 (1,1/4,11,7,4)	80.31	- (0.80) - 2.00 - (0.20) - 2.20		coarse, angular to subrounded. Cobbles are subangular. Brown slightly sandy gravelly sandy CLAY with high cobble and medium			2.0	
2.00 - 2.20 2.00 - 2.00 2.20 - 2.20	SPT (C)		50 (50 for 2mm/50 for 0mm) 50 (25 for 0mm/50 for 0mm)	80.11	2.20	<u>~ ~ ~ 8.</u>	boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are subangular, predominantly limestone. End of borehole at 2.200m			2.5	
										3.5	
					-					9.0 -	
Remarks							Water Added Water S From (m) To (m) Struck at (m) Casing		- Genera Time (min) R		
										•	
									Details		
							To (m) Diam (mm) From (m) 2.20 200 2.20	To (m	n) Time	(hh:mr	
able Percussio	on terminate	ed at 2.2	0m due to possible b	oulder o	bstruction.						

					Project		Project			e No.:	
	O _C	4			19-135			ne Level Crossings	XC	201-0	PRC01
		e (Coordi	nates:	Client:		2	heet :	1 of 1
)	55750	1.38 E		d Éireann / Irish Rail	_		
Method:					62/158	8.30 N		s Representative:	Sca	ale:	1:50
	cussion+Rota	ry Op	oen				JACOBS	S	Dr	illar·	AA
Plant:	4					d Level:	Dates:		-		+NOB
Pilcon+T44 Depth	Sample /	Casing	Water		80.4 Level	7 mOD Depth (m)		04/06/2020 - 19/06/2020	_	gger:	
(m)	Tests	Casing Depth (m)	Water Depth (m)	Field Records	(mOD)	(Thickness)	Legend	-	Water	Backf	ill
0.05 0.20 - 0.50	ES1 B2				80.26	(0.20) 0.20		TOPSOIL	-		
0.20 - 0.50	D3				70.06	(0.30)	<u> </u>	Light yellowish brown mottled light greyish brown slightly sandy slightly gravelly silty CLAY with low cobble content and occasional rootlets, moist.			3 =
0.50 0.50 - 1.20	ES4 B5				79.96	0.50	×	Sand is fine to coarse. Gravel is fine to coarse, subangular. Cobbles are	1		0.5
0.50 - 1.20	D6					(0.70)	x	bubangular, predominantly limestone. Yellowish brown mottled light grey and orange brown slightly sandy			\exists
						-	× × 0.	gravelly silty CLAY with low cobble content, moist. Sand is fine to coarse.		V//XV	1.0 —
1.20 - 2.00	B7				79.26	1.20	- 0 X	Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded, predominantly limestone.	/		=
1.20 - 2.00 1.20 - 1.65	D8 SPT (C)			N=6 (0,1/1,2,2,1)		Ē	× × ·	Soft yellowish brown with occasional light greyish brown mottling slightly			1.5 —
	N=6			. , , , , , ,		(0.80)	× × 0	sandy gravelly silty CLAY with low cobble content, moist. Sand is fine to			=
1.50	ES9						× × × 0.	coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded.			1
2.00 - 3.00 2.00 - 3.00	B10 D11				78.46	2.00	× × × 0.	Stiff yellowish brown slightly sandy gravelly silty CLAY with low cobble	1		2.0 —
2.00 - 2.45	SPT (C)			N=17 (1,1/2,4,6,5)		E	×	content, moist. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded, predominantly			3
	N=17					(1.20)	ζ.—o,—o	limestone.			2.5
						(1.20)	~ <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>				
3.00	ES14						× × 0.				3.0 —
3.00 - 3.20	B12				77.26	3.20	~ × o-		4		_
3.00 - 3.20 3.00 - 3.20	D13 SPT (C)			75 (4,5/75 for		(0.50)	××××	Yellowish brown sandy gravelly clayey SILT. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular.			1
3.00 3.20	311(0)			50mm)	76.76		$\times \times \times \times$				3.5 —
3.20 - 3.70 3.20 - 3.70	B15 D16				76.76	3.70		Open Hole Boring, Driller Described:	1		3
3.70 - 3.70	SPT (C)			50 (25 for 0mm/50		-	000	BOULDERS			4.0 —
				for 0mm)		-	0,00				
						(1.40)	0,00				4.5 —
						Ė	0,00				=
							0				-
5.10 - 5.18	SPT (C)			50 (50 for 75mm/50	75.36	5.10		End of borehole at 5.100m	-		5.0 —
				for 0mm)		E					1 3
						-					5.5 —
						-					
						-					6.0
						Ė					
						Ė F					-
						Ē					6.5
						-					7.0 —
											-
						<u> </u>					7.5
						Ė					
						E					8.0 —
						Ė					8.0
						Ē					=
						Ē					8.5 —
						[
						E					9.0 —
						Ē					
											9.5
						Ē					-
						Ē					=
						-					10.0 —
			Ш						1		
								Water Added	Ctotl	- C	
Remarks	ission termina	ted at	† 2 7C)m due to possible b	nulder	hstruction	Rotary	Prop Holo techniques employed to From (m) To (m) Struck at (m) Casing		- Genera Time (min	
								nd relocate to XC201-CPRC01A.			
	`				•				elling	Details	
								To (m) Diam (mm) From (m)	To (n	n) Tin	ne (hh:mm) 00:40
			_					3.70 200 3.20 5.10 151 3.60	3.40		00:30

	*		<u> </u>	Project	: No.:	Projec	t Name:	Вс	reho	ole I	No.:
)_C _/	\		19-135			ne Level Crossings	XC	201-	CPR	C01A
	Dge	O]	Coordi	nates:	Client:		5	Sheet	t 1 c	of 2
NA . II I			<u>/</u>		Е		d Éireann / Irish Rail	_	-1-		F.O.
Method: Cable Percus	sion+Rotary (Onen			Ν	JACOB:	s Representative:	SC	ale:		
Plant:		Орен		Ground	d Level:	Dates:		Dr	iller	: A/	ч <u> 1ОВ</u>
Pilcon+T44				Ground	mOD	Dutes.	08/06/2020 - 22/06/2020	Lo	gger		
Depth	Sample / Casi	ing Water oth Depth	Field Records	Level	Depth (m) (Thickness)	Legend		Water	Вас	kfill	
(m)	Tests (m	n) (m)		(mOD)	(0.20) 0.20		TOPSOIL	>			_
0.20 - 0.50 0.20 - 0.50 0.50 0.50 - 1.20 0.50 - 1.20	B1 D2 ES3 B4 D5				(1.00)	× × · · ·	Brown slightly silty slightly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are angular to subrounded, predominantly grey limestone.				0.5 —
					-	× × ·					1.0 —
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B6 D7 SPT (C)		N=6 (1,1/1,2,1,2)		1.20		Soft brown mottled grey slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are angular to subrounded, predominantly grey				1.5
1.50	N=6 ES8					a do 1	limestone.				-
2.00 - 2.20 2.00 - 2.20 2.00 - 2.45	B9 D10 SPT (C) N=11		N=11 (1,3/2,3,3,3)		2.00 (0.20) 2.20 (0.20) 2.40	× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	Firm brown slightly sandy slightly gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded.				2.0
2.20 - 2.40 2.20 - 2.40 2.40 - 3.40	B11 D12 B13				(1.00)	× × 0	Light brown slightly sandy slightly silty gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular. Very Stiff - Hard grey / brown slightly sandy gravelly CLAY with medium to				2.5 —
2.40 - 3.40 3.00 3.00 - 3.46	D14 ES15 SPT (C) N=68		N=68 (3,5/68 for 305mm)		3.40 (0.20) 3.60	\$ \\ \frac{\chi}{\chi} \chi \chi \chi \chi \chi \chi \chi \chi	high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded. Dark grey slightly clayey sandy very gravelly subangular Limestone	-			3.5
3.40 - 3.60 3.40 - 3.60	B16 D17		,		3.60′		COBBLES with low boulder content. Open Hole Boring, Driller Described:	1			-
3.40 - 3.40	SPT (C)		50 (25 for 0mm/50 for 0mm)				BOULDERS with sand and gravel.			 	4.0
5.10 - 5.18	SPT (C)		50 (25 for 75mm/50								4.5 —
			for 0mm)		(4.50)						5.5 —
6.60 - 6.90	SPT (C)		88 (16,18/88 for 150mm)								6.5 —
								 			7.5 —
8.10 - 8.25	SPT (C)		50 (14,20/50 for 0mm)		8.10		Open Hole Boring, Driller Described: BOULDERS				8.0 -
					-						9.0
9.60 - 9.68	SPT (C)		50 (25 for 75mm/50 for 0mm)		-						9.5 —
					-	000	Continued on Next Page	_	Ì	ı°.	10.0 — - - -
Remarks				<u> </u>	<u> </u>	<u> </u>	Water Added Water		- Gene		
							Casing Details Chis	5.60 7.60 8.50 Selling	20 20 20 20 20 Details	s	2.20 4.90 7.60 8.50
						_	To (m) Diam (mm) From (m) 3.60 200 3.40 19.60 151	To (r			hh:mm) 1:00
Cable Percussion	n terminated at	3.60m	due to possible boulde	r obstruc	tion. Rotary (Open Hol	e techniques employed to 19.60m.		\perp		

		8		<u> </u>	Project	: No.:	Project	: Name:		Borehole	No.:
)_IC				19-135			ne Level Crossings	:	XC201-CPF	RC01A
	DO	e (Coordi	nates:	Client:			Sheet 2	of 2
				<u>/</u>		Е		l Éireann / Irish Rail			
Method: Cable Percus	sion+Rota	arv Or	nen			N		s Representative:	[Scale: 1	
Plant:	51011111010	11 y O _F			Ground	d Level:	Dates:	JACOBS Dates:			ia <u>Nob</u>
Pilcon+T44					Ground	mOD	Dutes.	08/06/2020 - 22/06/2020		Logger: IH	
Depth (m)	Sample , Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description		ਬੇ Backfill	ı
		(,			(02)	-	$0^{\circ}0$			_	10.5 —
10.60 - 10.90	SPT (C)			85 (14,16/85 for 150mm)		(6.00)					11.0
13.60 - 13.90	SPT (C)			89 (14,16/89 for 150mm)							13.5 — — — — — — 14.0 —
						14.10		Open Hole Boring, Driller Described: Sandy gravelly CLAY			14.5
						(1.50)					15.0
						15.60		Open Hole Boring, Driller Described: Sandy CLAY with boulders.			15.5 — — — —
16.60 - 17.05	SPT (C) N=81		N=81	N=81 (11,11/16,20,20,25)		(1.50)					16.0 — - - - - 16.5 —
	IN-01			(11,11,10,20,20,23)		17.10		Open Hole Boring, Driller Described: BOULDERS			17.0 — — — — —
						(2.50)					17.5 —
19.60 - 19.82	SPT (C)			70 (17,19/70 for 75mm)		19.60	000	End of borehole at 19.600m			19.0 ————————————————————————————————————
											20.0 —
Remarks			<u> </u>					From (m) To (m) struck at (r 2.20 3.40 2.20 5.60		rike - General (m) Time (min) R	2.20 4.90
								Casing Details To (m) Diam (mm) From (r	Chisell	ing Details	7.60 8.50 (hh:mm)
Cable Percussion	n terminate	d at 3.	60m	due to possible boulde	r obstruc	tion. Rotary	Open Hol	3.60 200 3.40 e techniques employed to 19.60m. 151			01:00

		R			Project	: No.:	Projec	t Name:	Во	rehole	No.:
0					19-135			ine Level Crossings	XC	201-C	PRC02
	Dg	e (Coordi		Client:		Ş	Sheet 1	of 2
No a de la ada				<u>/</u>	55755			d Éireann / Irish Rail			1.50
Method: Cable Percussi	on+Rota	rv Or	oen		62450	1.31 N	JACOB:	s Representative:	Sci	ale:	1:50 4A
Plant:		., -,			Ground	d Level:	Dates:		_ Dr	ilları	+NOB
Pilcon+T44						8 mOD		09/06/2020 - 17/06/2020	Lo	gger:	Н
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfi	II
0.05	ES1	()	.,		81.78	(0.20) 0.20		TOPSOIL		: <u> </u>	: -
0.20 - 1.20 0.20 - 1.20	B2 D3				01.70	0.20		Orange brown slightly sandy gravelly CLAY with low cobble content and frequent rootlets. Sand is fine to coarse.			: -
0.50	ES4					(1.00)		subangular to subrounded.			0.5
						(1.00)					
1.20 - 2.00	B5				80.78	1.20	2 - 0 - 0				1.0
1.20 - 2.00	D6			N. 42 /2 4/2 2 2 4\			×	Firm light brown slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to			1.5
1.20 - 1.65	SPT (C) N=13			N=13 (2,4/3,3,3,4)		(0.80)	× × 0	subrounded. Cobbles are subangular to subrounded.			: 1.5
1.50 2.00 - 2.50	ES7 B8				79.98	2.00	× × .	<u>}</u>			2.0
2.00 - 2.50	D9				79.98	(0.50)	* × × ·	Stiff light brown slightly gravelly sandy silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded.]		. 2.0
2.00 - 2.45	SPT (C) N=27			N=27 (1,1/4,5,8,10)	79.48	2.50	0 <u>0</u> 0 <u>0</u> 0	Cobbles are subangular to subrounded.			2.5
2.50 - 2.80 2.50 - 2.80	B10 D11				73.48	2.30	<u> </u>	Light brown slightly gravelly sandy CLAY with low to medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to			
2.80 - 3.30	D12					(0.80)	×°×.	subrounded. Cobbles are subangular to subrounded.			: 3.0
2.80 - 3.30 3.00	D13 ES14						× × 0				: =
3.00 - 3.00	SPT (C)			50 (25 for 0mm/50 for 0mm)	78.68	3.30		Open Hole Boring, Driller Described: Boulder CLAY.	1		3.5
3.30 - 3.30	SPT (C)			50 (25 for 0mm/50		-	<u> </u>	Boulder CLAI.			: -
				for 0mm)		_	<u> </u>				4.0
						[
						(2.40)	~				4.5 —
4.70 - 5.01	SPT (C)			N=107 (9,11/107 for							=
				160mm)		_					5.0 —
							~~~.				=
							~~~~~				5.5 —
					76.28	5.70		Open Hole Boring, Driller Described:	-		=
								Sandy gravelly boulder CLAY.			6.0 —
6.20 - 6.51	SPT (C)			N=103 (10,12/103 for 160mm)		Ē	0.0				=
				101 10011111)			0.0				6.5
							0.00				_
						_	<u> </u>				7.0 -
						(3.00)	^				_
						<u> </u>	0.00				7.5
											_
						<u> </u>	0.0				8.0 —
											_
					72.20	0.70					8.5 —
					73.28	8.70		Open Hole Boring, Driller Described: Sandy CLAY	1		_
9 20 . 9 60	CDT (C)			N-67 (0 0/67 for		-		Sumy CENT			9.0 —
9.20 - 9.60	SPT (C)			N=67 (9,9/67 for 255mm)		<u> </u>					_
						(2.00)					9.5 —
											10.0 —
						-		Continued on Next Page	+		-
Remarks	1	1		1	<u> </u>	1	1	Water Added Water		- General	
								From (m) To (m) Struck at (m) Casin	5 tO (M)	rime (min)	nose to (m)
								Casing Details Chis	elling	Details	
								To (m) Diam (mm) From (m) 3.30 200 2.60	To (n	n) Tim	e (hh:mm) 00:15
Cable Percussion	terminated	d at 3.	30m	due to probable bould	er obstru	ction. Rotary	Open Ho	ole techniques employed to 19.70m. 19.70 151 3.00 3.30	3.00 3.30)	00:20 00:15

		8			Projec	t No.:	Project	Name:		Во	rehole	No.:
) _C				19-135			ne Level Crossings		хс	201-CP	RC02
	DO	e (Coordi	nates:	Client:			S	heet 2	of 2
				<u>/</u>	55755			l Éireann / Irish Rail				
Method: Cable Percus	rion I Bota	n. Or	oon		62450	1.31 N		s Representative:		Sca	ale: 1:	
	Sion+Nota	1 y O p	Jen				JACOB:			Dri	iller: A	A NOB
Plant: Pilcon+T44						d Level: 8 mOD	Dates:	09/06/2020 - 17/06/2020		Lo	gger: ⊩	
Depth	Sample /	Casing Depth	Water Depth (m)	Field Records	Level	Depth (m)	Legend	Description		Water	Backfill	
(m)	Tests	(m)	(m)	1101211000120	(mOD)	(Thickness)		2000.		>	- Davidin	10.5 —
10.70 - 11.10	SPT (C)			N=70 (14,14/70 for 255mm)	71.28	(2.00)		Open Hole Boring, Driller Described: Gravelly SAND with boulders.				11.0 —
13.70 - 13.78	SPT (C)			50 (25 for 75mm/50 for 0mm)	69.28	12.70		Open Hole Boring, Driller Described: SAND with boulders.				12.5 — 13.0 — 13.5 — 14.0 —
						<u> </u>	000					14.5 —
					67.28 66.28	(1.00) 15.70		Open Hole Boring, Driller Described: Boulder CLAY.				15.0 —
16.70 - 17.00	SPT (C)			78 (10,16/78 for 150mm)	00.28	(3.00)		Open Hole Boring, Driller Described: Gravelly SAND with boulders.				16.0 — 17.5 — 18.0 — 18.0 — 1
					63.28	18.70		Open Hole Boring, Driller Described: Very sandy CLAY with boulders.				18.5 — — —————————————————————————————————
19.70 - 20.00	SPT (C)			78 (11,17/78 for 150mm)	62.28	19.70	700	End of borehole at 19.700m				20.0 —
Remarks	ı				I	I.	I	Water Added From (m) To (m)	Water		- General	ose to (m)
								FIUIT (III) 10 (M)	Sauck at [III] Casin	(III)	e (min) RC	-3c to (III)
								Casing Details To (m) Diam (mm)	Chi	selling To (n	Details	(hh:mm)
Cable Percussion	n terminata	t ot o	30m	due to probable bould	er obstru	ction Potor:	Onen ⊔a	3.30 200 19.70 151	2.60 3.00	2.60 3.00	0	00:15 00:20
Capie Percussion	i terminate	udl⊃.	JUIJ	ane to bionable bonig	ะเ บมรเเน	ction, Rotary	open H0	ie techniques employed to 19.70m.	3.30	3.30	0	00:15

Appendix C

Trial Pit Logs

6	*		Projec	t No.:	Projec	t Name:	Tria	al Pit	No.:
			19-135			ne Level Crossings	X	C201	-TP01
	Dgec			inates:	Client:		SI	heet	1 of 1
Mathadi			55747	3.29 E		d Éireann / Irish Rail		.lo.	1,20
Method: Excavation			62470	6.32 N	JACOB:	s Representative:			1:20
Plant:			Ground	d Level:	Date:	S	Dri	ver:	AL
Kobelco SK1	40SRLC			9 mOD	03/07/	2020	Log	ger:	MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.05	ES1		(IIIOD)	(THICKHESS)	XXX	TOPSOIL: Soft dark brown slightly sandy silty CLAY with occasional gravel			
				- (0.20) -		and frequent rootlets, moist			-
			79.39	0.20	X	SUBSOIL: Firm orange brown slightly sandy slightly gravelly silty CLAY with			-
				- (0.20) -	X - 3e	occasional rootlets, moist. Sand fine to coarse. Gravel fine to coarse predominantly limestone.			
			79.19	0.40	8.0	Stiff yellowish brown and light grey sandy gravelly silty CLAY with medium	1		-
0.50 0.50 - 1.00	ES2 B3			-	**************************************	cobble and small boulder content, moist. Sand fine to coarse. Gravel fine to coarse. Gravel, cobbles and boulders subangular to subrounded			0.5
0.50 - 1.00	D4			-		predominantly light and dark grey limestone.			-
					\$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0				-
					\$ 0 \$ 0 8 0				-
				-	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				-
1.00	ES5			- (1.30)	\$ 50° 8				1.0
				-	*.0 *.0 *.0 *.0				-
				-	\$000 0000 0000				-
				-	\$ 55.78 Fo \$ 50.				
				-	\$000 \$000 \$000 \$000 \$000 \$000 \$000 \$00				-
				-	* 0× β				1.5 —
					\$000 8000 8000 8000 8000 8000 8000 8000				=
1.70 - 2.20 1.70 - 2.20	B6 D7		77.89	1.70	<u> </u>	Firm yellowish brown sightly sandy slightly gravelly CLAY with medium cobble and boulder content, very moist becoming wet. Sand fine to			-
				-	000 B	coarse. Gravel fine to coarse. Gravel, cobbles and boulders subangular to			
				-	8.00°B	subrounded predominantly light and dark grey limestone. Boulders up to 1.0m x 0.6m x 0.5m.			
				(0.00)	\$ 00 B				2.0 —
2.20 - 2.50	B8			- (0.80) -					
2.20 - 2.50	D9			ŀ	* <u>0</u>				
				-					
			77.09	- - 2.50	\$50 \$0				2.5 —
			77103	2.50	\$\disp\cong \\ \disp\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \	Very stiff yellowish to greyish brown slightly sandy gravelly CLAY with medium cobble and boulder content, moist. Sand fine to coarse. Gravel			-
2.70 - 3.20	B10			-	\$000 \$000 \$000	fine to coarse, angular to subrounded. Cobbles and boulders subangular to subrounded light and dark grey limestone.			_
2.70 - 3.20	D11			-	\$0 \$0 \$0 \$0	to subsouriated light und durk grey illinestorie.			-
				- (0.70)	80% 90% 100%				
3.00	ES12			-					3.0
				-	1 20 E				-
			76.39	- 3.20	8.00 B	End of trial pit at 3.200m			-
				-		Litu oi uiai pit at 3.200/II			-
				-					
				-					3.5 —
				-					-
				-					-
				-					-
Remarks Hand Vane Te	ests attempted unsi	uccessfully due to rela	tivelv high	granular co	ontent.	water strikes.	bility		na
valle le	accompted unst	and to rela		oraniaiai CC		Struck at (m): Remarks:	es co	llapsi	ng
						2.50 W	idth:		2.00
Trial Pit termi	nated at 3 20m on	either a large limesto	ne houldo	r or nossible	e hedroo		ngth:		4.50
man rit tellilli	nateu at 3.20111 UII	ciaici a laige lilliesto	ic boulde	i oi hossinii	L DEUIUL		_		

	•	7	Project	t No.:	Projec	t Name:	Trial P	it No.:
			19-135	,	Cork Li	ne Level Crossings	XC20	1-TP02
	bgeo)	Co-ord	inates:	Client:		Shee	t 1 of 1
			55745	6.95 E		d Éireann / Irish Rail		
Method: Excavation			62461	8.69 N		s Representative:	Scale:	1:20
			6	al Laurali	JACOB:	S	Driver	: AL
Plant: Kobelco SK14	40SRLC			d Level: 4 mOD	Date: 03/07/	/2020	Logge	r: MN
Depth	Sample / Tests	Field Records	Level	Depth (m)	Logond		Water	
(m) 0.05	ES1		(mOD)	(Thickness)		TOPSOIL: Soft dark brown slightly sandy silty CLAY with occasional gravel,	5	
				(0.20)		frequent rootlets and occasional roots, moist		-
			80.04	0.20	X	SUBSOIL: Firm light brown mottled orange slightly sandy slightly gravelly	1	-
				(0.20)	X - 3e	silty CLAY with occasional roots and rootlets, moist. Sand fine to coarse. Gravel fine to coarse predominantly limestone.		-
			79.84	0.40	* * • • • • • • • • • • • • • • • • • • •	Stiff becoming very stiff yellowish brown and light grey sandy gravelly silty	1	-
0.50 0.50 - 1.00	ES2 B3			-	\$000 B	CLAY with medium cobble and low small boulder content, moist. Sand fine to coarse. Gravel fine to coarse. Gravel, cobbles and boulders subangular		0.5
0.50 - 1.00	D4			-	\$ 00 B	to subrounded predominantly light and dark grey limestone.		-
				- (0.70)	200 g			-
				- ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
				-	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
1.00	ES5			-				1.0
			79.14	1.10		Firm, locally soft, yellowish brown sandy gravelly silty CLAY with medium	1	-
						cobble and boulder content, very moist. Sand fine to coarse. Gravel fine to coarse. Gravel, cobbles and boulders subangular to subrounded		-
				_	\$25.8 \$-0	predominantly light and dark grey limestone with occasional purple		-
				-	~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	conglomerate.		-
1.50 - 2.00	B6			ŀ	\$ 0 \$ 0 8			1.5 —
1.50 - 2.00	D7			[\$ 0 \$ 0 8			-
				(4.20)	- 			-
				- (1.30) -	\$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50			-
				-	\$\frac{1}{2}\frac{1}{2			-
				F	\$\disp\cong \\ \disp\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \ding\cong \\ \			2.0 —
				-	\$05.8 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5			-
				-	\$0×8			-
				-	<u>*</u> °°, 30 8			-
			77.84	2.40		Very stiff yellowish to greyish brown sandy gravelly silty CLAY with medium	_	-
				-	1000 B	cobble and boulder content, moist with occasional wet pockets. Sand fine		2.5 —
2.60 - 3.10	В8			-	**************************************	to coarse. Gravel fine to coarse, angular to subrounded. Cobbles and boulders subangular to subrounded light and dark grey limestone. Largest		=
2.60 - 3.10	D9			-	\$ 0 8	boulder is 0.7m x 0.45m x 0.4m.		-
					\$ 000 B			-
				- (0.90) -	\$00 8			-
3.00	ES10			-	000 B			3.0
				-	<u>~~</u> 0			=
				-	<u>~~</u> 0			-
			76.94	- 3.30	\$ 000 B	End of trial pit at 3.300m		-
				-		End of that pit at 0.000111		-
				-				3.5 —
				-				_
				-				=
				-				_
				-				-
				-				
Remarks			1	l	l .	Water Strikes: Sta	bility:	
Hand Vane Tes	sts attempted unsu	ccessfully due to rel	atively high	granular co	ontent.		es spallir	ng
						2.40		
							dth:	1.40
Trial Pit termir	nated at 3.30m due	to a large boulder i	n the south	-west corne	er obstru	acting further excavation.	ngth:	5.60

	9	1	Projec	t No.:	Projec	t Name:	Trial	Pit No.:
			19-135	i	Cork Li	ne Level Crossings	XC	201-TP03
	bgeo		Co-ord	inates:	Client:		She	eet 1 of 1
	<u> </u>		55763	8.45 E		f Éireann / Irish Rail		
Method: Excavation			62441	5.67 N		s Representative:	Scale	1:20
					JACOB	S	Drive	er: AL
Plant: Kobelco SK14	OSRLC			d Level: 0 mOD	Date: 03/07/	2020	Logg	er: MN
Depth	Sample / Tests	Field Records	Level	Depth (m)	Logond	Description	Water	
(m) 0.05	ES1		(mOD)	(Thickness)		TOPSOIL: Soft dark brown slightly sandy silty CLAY with occasional gravel	\$	
				(0.20)		and frequent rootlets, moist		-
			82.70	0.20	X	SUBSOIL: Firm light brown and orange brown slightly sandy slightly gravelly	-	-
i				(0.20)	<u> </u>	silty CLAY with occasional rootlets, moist. Sand fine to coarse. Gravel fine to coarse predominantly limestone.		-
			82.50	0.40	~~°°°	Firm to stiff becoming firm yellowish brown and light grey sandy gravelly	1	-
0.50 0.50 - 1.00	ES2 B3			-	-0°-0	silty CLAY with medium to high cobble and medium small boulder content, moist. Occasional large boulders. Sand fine to coarse. Gravel fine to		0.5 —
0.50 - 1.00	D4			-	\$000 8000 8000 8000 8000 8000 8000 8000	coarse. Gravel, cobbles and boulders subangular to subrounded predominantly light and dark grey limestone with occasional purple		-
					\$ 000 B	conglomerate.		
				-	\$ 00 B			
				-	\$ 50 P			-
1.00	ES5			-	<u>~~</u> 0			1.0
				- - (1.50)	**************************************			-
				(1.30)	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-
					\$ 0 \$ 0 \$ 0			-
1.40 - 1.90	В6			-	\$ 0 \$ 0 \$ 0			
1.40 - 1.90	D7			-	\$ 000 m			1.5 —
				-	\$ 000 m			-
				-	\$ 000 m			
				-				
			81.00	1.90		Firm leadly of the valley is branes distributed and granelly CLAV with	_	
				-		Firm, locally soft, yellowish brown slightly sandy gravelly CLAY with medium to high cobble and boulder content, wet. Sand fine to coarse.		2.0 —
				-	200 200 200 200	Gravel fine to coarse. Gravel, cobbles and boulders subangular to subrounded predominantly light and dark grey limestone.		-
2.20 - 2.70	В8			-	\$ 0 \$ 0 \$ 0			-
2.20 - 2.70	D9			-	\$ 0 \$ 0 \$ 0			
				-	\$ 50° 6			
				(1.10)	\$ 0 × 0 × 0			2.5 —
				-	\$ 0 × 0 × 0			-
				-	\$05.8			-
				-	\$ 0 × 8			
					\$0,000 0.000			
3.00	ES10		79.90	- 3.00	\$000 000 000 000			3.0 —
3.00 - 3.50	B11		75.50	3.00	\$0 \$0 \$0	Very stiff yellowish to greyish brown sandy gravelly silty CLAY with medium cobble and boulder content, moist. Sand fine to coarse. Gravel fine to		3.0 -
3.00 - 3.50	D12				\$0.7.8 \$0.2.8	coarse, angular to subrounded. Cobbles and boulders subangular to		
				(0.60)	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	subrounded predominantly light and dark grey limestone.		
				- (0.60) -	\$0 \$0 \$0			
					\$0 \$0 \$0 \$0			•
				-	\$0.78 \$0.00			3.5 —
			79.30	- 3.60 -	M. M.	End of trial pit at 3.600m		
				-				=
				-				-
				-				
							1	
Remarks Hand Vane Tes	ts attempted unsu	ccessfully due to rela	atively high	granular co	ontent.	water strikes.	bility: es colla	ancing
		,	, 3	-		Struck at (m): Remarks:	es collà	zhanig
						1.90 W	idth:	2.30
Trial Di++a	atod at 2 60m d	to nit walls called -!-	o of				ngth:	4.80
ırıaı PIT Termin	ated at 3.60M due	to pit walls collapsing	ıg.				o	50

	^	7	Projec			t Name:			Г		t No.:
(19-135			ne Level Crossings				XC20	1-TP04
	ogeo			inates:	Client:	d Éireann / Irish Rail				Shee	t 1 of 1
Method:			55766	3.87 E		s Representative:			5	cale:	1:20
Excavation			62433	6.31 N	JACOB:	•				Driver:	
Plant:			Groun	d Level:	Date:					river	AL
Kobelco SK14	40SRLC			0 mOD	03/07/	2020				.ogger	: MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)			Description			Water	
0.05	ES1		84.00	- (0.20) - 0.20 - (0.20)	X	TOPSOIL: Soft dark brown slight and frequent rootlets, moist SUBSOIL: Firm light brown, light sandy slightly gravelly silty CLAY	t greyish brown and	d orange brown slig ootlets, moist. Sand	htly		
0.50	ES2		83.80	- 0.40 -	- 20 - 20 - 20 - 20 - 20 - 20 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	to coarse. Gravel fine to coarse Firm/stiff yellowish brown and medium to high cobble and sma coarse. Gravel fine to coarse. (light grey sandy gra all boulder content, Gravel, cobbles and	velly silty CLAY with , moist. Sand fine to boulders subangula	0		0.5 —
0.60 - 1.10 0.60 - 1.10	B3 D4			- - - (0.90)	\$\frac{1}{2}\frac{1}{2	subrounded predominantly ligh	t and dark grey lim	estone.			
1.30 - 1.80	ES5		82.90	1.30		Firm yellowish brown slightly sa	andy gravelly CLAY v	with medium to hig		▼	1.0
1.30 - 1.80	D7			- (0.60)	8 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	cobble and boulder content, we coarse. Gravel, cobbles and bou predominantly light and dark gr of medium to dark grey gravelly corner.	ulders subangular t ey limestone. Bou	o subrounded Iders up to 0.7m. P			1.5 —
2.00 - 2.50 2.00 - 2.50	B8 D9		82.30	1.90	\$\frac{1}{2}\frac{1}{2	Very stiff yellowish to greyish bi cobble and boulder content, mi coarse, angular to subrounded. subrounded light and dark grey	oist. Sand fine to co Cobbles and bould	oarse. Gravel fine to			2.0 —
				(0.80)							2.5 —
			81.50	2.70	**************************************	End o	f trial pit at 2.700m				
				- - - -							3.0
				- - - -							
				- - - -							3.5 —
				-							
Remarks Hand Vane Tes	sts attempted unsu	ccessfully due to rela	ntively high	granular co	ontent.		Water Struck at (m): 1.20	Strikes: Remarks:		collaps	
Trial Pit termir	nated at 2.70m due	to large boulder obs	structions.						Widt Leng		2.70 4.60

Appendix D Trial Pit Photographs

		T.PIT1	
	Tr	ial Pit Photographs	
S	Client:	nród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

	1.9111	
	Trial Pit Photographs	
Client:		
	Iarnród Eireann	
Engineer:		
	Jacob's	
Date:	July 2020	
	Client: Engineer:	larnród Éireann Engineer: Jacob's

	T.PIT1	
	Trial Pit Photographs	
Client:	larnród Éireann	
Engineer:	Jacob's	
Date:	July 2020	

oc bgeo

larnród Éireann Cork Line Level Crossings XC201 (19-135-1) T.PIT1

Trial Pit Photographs

larnród Éireann

Engineer:

Jacob's

July 2020

Trial Pit Photographs

Client: larnród Éireann

Engineer:

Jacob's

July 2020

		T.PIT1	
		Trial Pit Photographs	
6	Client:	larnród Éireann	
	Engineer:	Jacob's	
1	Date:	July 2020	

T.PIT1
Trial Pit Photographs

Client:

larnród Éireann

Engineer: Jacob's

Date: July 2020

		I.PH1	
		Trial Pit Photographs	
S	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

٥,	T.PIT1
	Trial Pit Photographs
	larnród Éireann
	Engineer: Jacob's
	Date: July 2020

		T.PIT1	
		Trial Pit Photographs	
3	Client:	arnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

T.PIT1
Trial Pit Photographs
Client:
larnród Éireann
Engineer:

Jacob's

July 2020

	T.PIT2	
	Trial Pit Photographs	
6	larnród Éireann	
	Jacob's	
	Date: July 2020	

	T.PIT2	
	Trial Pit Photographs	
•	larnród Éireann	
	Iacob's	
	Date: July 2020	

		T.PIT2	
ò		Trial Pit Photographs	
	Client:	larnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

T.PIT2
Trial Pit Photographs

larnród Éireann

Engineer:

Jacob's

July 2020

	T.PIT2	
	Trial Pit Photographs	
6	larnród Éireann	
	Jacob's	
	Date: July 2020	

Trial Pit Photographs

larnród Éireann

Engineer:

Jacob's

July 2020

		T.PIT2	
		Trial Pit Photographs	
3	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		T.PIT2	
		Trial Pit Photographs	
S	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

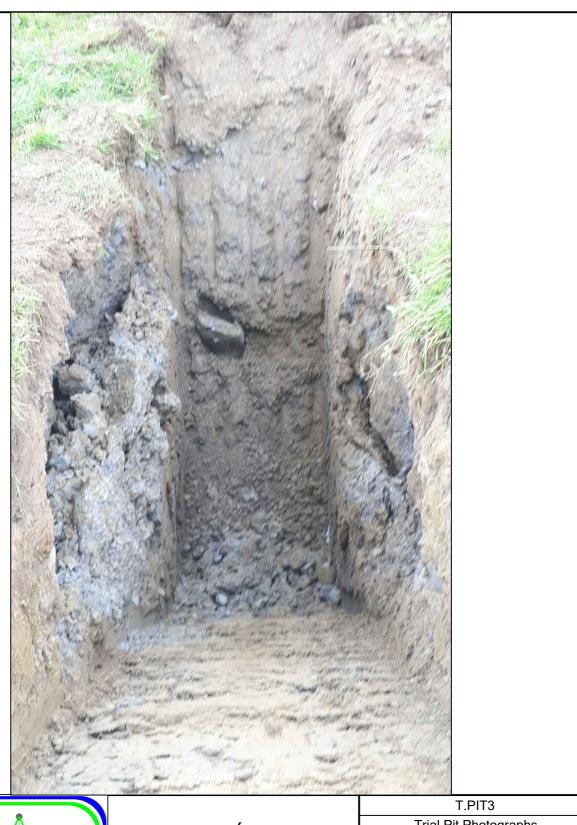
		T.PIT2	
		Trial Pit Photographs	
S	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		T.PIT2	
		Trial Pit Photographs	
S	Client:	arnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		T.PIT2	
		Trial Pit Photographs	
	Client:	larnród Éireann	
3	F		
	Engineer:	Jacob's	
	Date:	July 2020	

Oc bgeo

larnród Éireann Cork Line Level Crossings XC201 (19-135-1) T.PIT2


Trial Pit Photographs

larnród Éireann

Engineer:

Jacob's

July 2020

	T.PIT3
	Trial Pit Photographs
Client:	Iarnród Éireann
naineer.	

Jacob's

July 2020

		T.PIT3	
3		Trial Pit Photographs	
	Client:	larnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

larnród Éireann

Cork Line Level Crossings

XC201 (19-135-1)

T.PIT3
Trial Pit Photographs

Iarnród Éireann

Jacob's

July 2020

Client:

Engineer

		1.P113	
		Trial Pit Photographs	
3	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

	T.PIT3	
	Trial Pit Photographs	
6	larnród Éireann	
	Jacob's	
	July 2020	

		T.PIT3	
		Trial Pit Photographs	
S	Client:	larnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

T.PIT3
Trial Pit Photographs
Client:
larnród Éireann
Engineer:

Jacob's

July 2020

	1.PH3	
	Trial Pit Photographs	
Client:		
	larnród Eireann	
_		
Engineer:		
	Jacob's	
_		
Date:	July 2020	
	Client: Engineer:	Trial Pit Photographs Client: larnród Éireann Engineer: Jacob's



		T.PIT3	
		Trial Pit Photographs	
6	Client:	larnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		1.7113	
		Trial Pit Photographs	
•	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		T.PIT3	
	Т	rial Pit Photographs	
3	Client:	rnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		1.PH3	
		Trial Pit Photographs	
6	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

		T.PIT3	
		Trial Pit Photographs	
3	Client:	larnród Éireann	
	Engineer:	Jacob's	
	Date:	July 2020	

	T.PIT4	
	Trial Pit Photographs	
3	larnród Éireann	
	Jacob's	
	Date: July 2020	

	T.PIT4	
	Trial Pit Photographs	
S	larnród Éireann	
	Jacob's	
	Date: July 2020	

	T.PIT4	
	Trial Pit Photographs	
•	larnród Éireann	
	Jacob's	
	Date: July 2020	

Trial Pit Photographs

Client: larnród Éireann

Engineer: Jacob's

July 2020

larnród Éireann Cork Line Level Crossings XC201 (19-135-1)

	T.PIT4					
		Trial Pit Photographs				
S	Client:	larnród Éireann				
	Engineer:	Jacob's				
	Date:	July 2020				

larnród Éireann Cork Line Level Crossings XC201 (19-135-1) T.PIT4

Trial Pit Photographs

Client: larnród Éireann

Engineer:

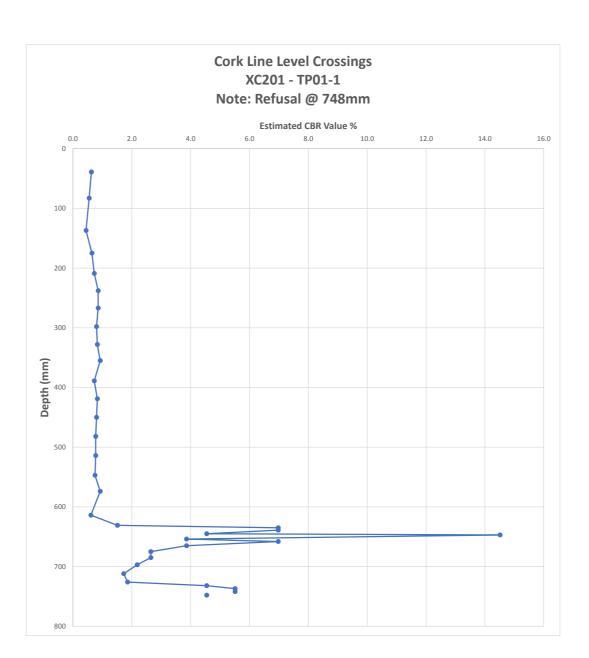
Jacob's

July 2020

larnród Éireann Cork Line Level Crossings XC201 (19-135-1)

	T.PIT4					
		Trial Pit Photographs				
S	Client:	larnród Éireann				
	Engineer:	Jacob's				
	Date:	July 2020				

Appendix E

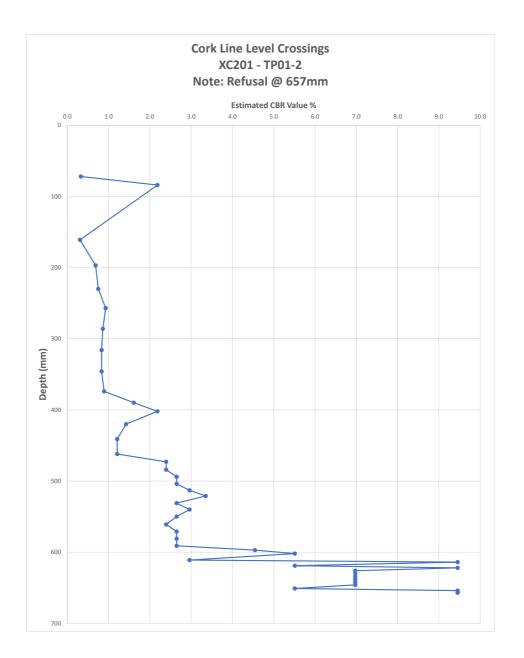

Indirect CBR Test Data

Location	XC201 - TP01-1	Job No	19-135
Easting	Northing	Elevation	1

Easting	Northing	Elevation

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1140	mm	14/07/2020

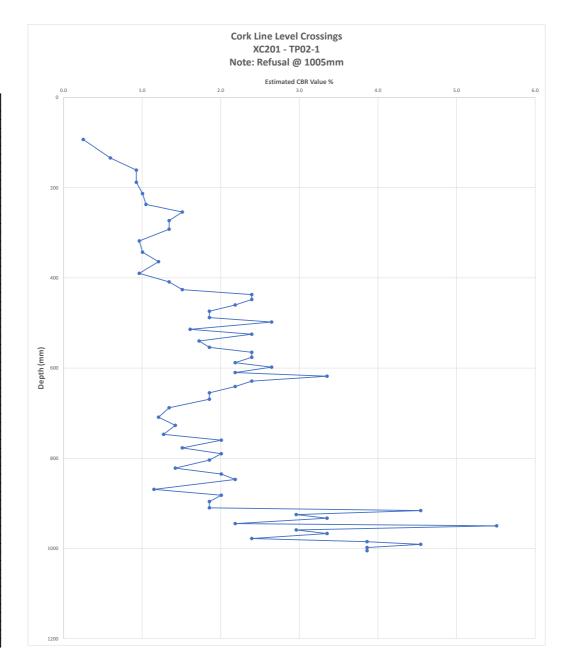
No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	1101	39	39	0.6
2	1057	44	83	0.6
3	1003	54	137	0.4
4	965	38	175	0.6
5	931	34	209	0.7
6	902	29	238	0.9
7	873	29	267	0.9
8	842	31	298	0.8
9	812	30	328	0.8
10	785	27	355	0.9
11	751	34	389	0.7
12	721	30	419	0.8
13	690	31	450	0.8
14	658	32	482	0.8
15	626	32	514	0.8
16	593	33	547	0.7
17	566	27	574	0.9
18	526	40	614	0.6
19	509	17	631	1.5
20	505	4	635	7.0
21	501	4	639	7.0
22	495	6	645	4.5
23	493	2	647	14.5
24	486	7	654	3.9
25	482	4	658	7.0
26	475	7	665	3.9
27	465	10	675	2.6
28	455	10	685	2.6
29	443	12	697	2.2
30	428	15	712	1.7
31	414	14	726	1.9
32	408	6	732	4.5
33	403	5	737	5.5
34	398	5	742	5.5
35	398	0	742	İ
36	392	6	748	4.5
37	392	0	748	
38	392	0	748	



Location	XC201 - TP01-2	Job No	19-135

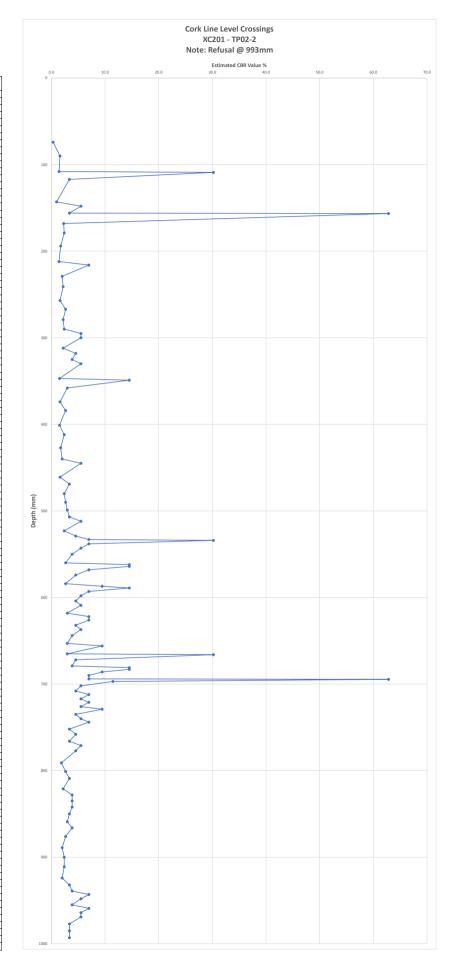
Easting	Northing	Elevation

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1140	mm	14/07/2020


No. of Blows	READING	Penetration/blow	DEPTH	CBF
	(mm)	(mm)		%
1	1068	72	72	0.3
2	1056	12	84	2.2
3	979	77	161	0.3
4	943	36	197	0.7
5	910	33	230	0.7
6	883	27	257	0.9
7	854	29	286	0.9
8	824	30	316	0.8
9	794	30	346	0.8
10	766	28	374	0.9
11	750	16	390	1.6
12	738	12	402	2.2
13	720	18	420	1.4
14	699	21	441	1.2
15	678	21	462	1.2
16	667	11	473	2.4
17	656	11	484	2.4
18	646	10	494	2.6
19	636	10	504	2.6
20	627	9	513	3.0
21	619	8	521	3.4
22	609	10	531	2.6
23	600	9	540	3.0
24	590	10	550	2.6
25	579	11	561	2.4
26	569	10	571	2.6
27	559	10	581	2.6
28	549	10	591	2.6
29	543	6	597	4.5
30	538	5	602	5.5
31	529	9	611	3.0
32	526	3	614	9.5
33	521	5	619	5.5
34	518	3	622	9.5
35	514	4	626	7.0
36	510	4	630	7.0
37	506	4	634	7.0
38	502	4	638	7.0
39	498	4	642	7.0
40	494	4	646	7.0
41	489	5	651	5.5
42	486	3	654	9.5
43	483	3	657	9.5
44	483	0	657	3.5
45	483	0	657	1

Location	XC201 - TP02-1	Job No	19-135
Easting	Northing	Elevation	

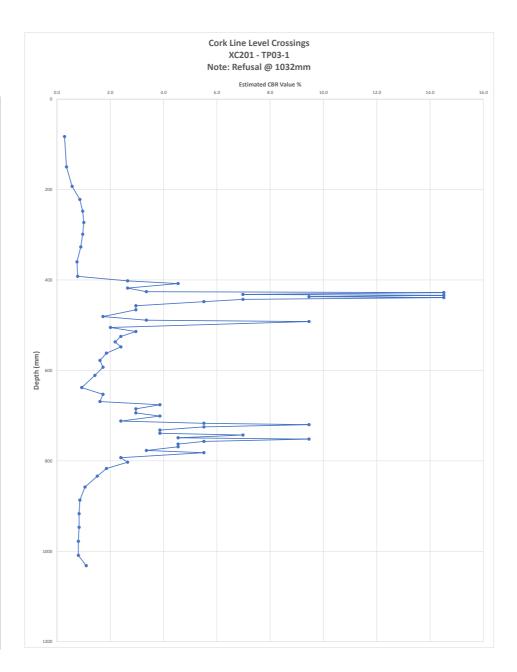
Test Start Depth	0	mm/bgl	DATE
Start Reading:	1123	mm	14/07/2020


art Reduing.	1123	JIIIIII	14/07/2020	4
No. of Blows	READING	Penetration/blow	DEPTH	CE
	(mm)	(mm)		9/
1	1030	93	93	0.
2	989	41	134	0.
3	962	27	161	0.
4	935	27	188	0.
5	910	25	213	1.
6	886	24	237	1.
7	869	17	254	1.
8	850	19	273	1.
9	831	19	292	1.
10	805	26	318	1.
11	780	25	343	1.
12	759	21	364	1.
13	733	26	390	1.
14	714	19	409	1.
15	697	17	426	1.
16	686	11	437	2.
17	675	11	448	2.
18	663	12	460	2.
19	649	14	474	1.
20	635	14	488	1.
21	625	10	498	2.
22	609	16	514	1.
23	598	11	525	2.
24	583	15	540	1.
25	569	14	554	1.
26	558	11	565	2.
27	547	11	576	2.
28	535	12	588	2.
29	525	10	598	2.
30	513	12	610	2.
31	505	8	618	3.
32	494	11	629	2.
33	482	12	641	2.
34	468	14	655	1.
35	454	14	669	1.
36	435	19	688	1.
37	414	21	709	1.
38	396	18	727	1.
39	376	20	747	1.
40	363	13	760	2.
41	346	17	777	1.
42	333	13	790	2.
43	319	14	804	1.
44	301	18	822	1.
45	288	13	835	2.
46	276	12	847	2.
47	254	22	869	1.
48	241	13	882	2
49	227	14	896	1
50	213	14	910	1.
51	207	6	916	4.
52	198	9	925	3.
53	190	8	933	3.
54	178	12	945	2
55	173	5	950	5.
56	164	9	959	3.
57	156	8	967	3.
58	145	11	978	2
59	138	7	985	3.
60	132	6	991	4.
		7	998	3.
61	125			

Location	XC201 - TP02-2	Job No	19-135
	Northing	Elevation	

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1154	mm	14/07/2020

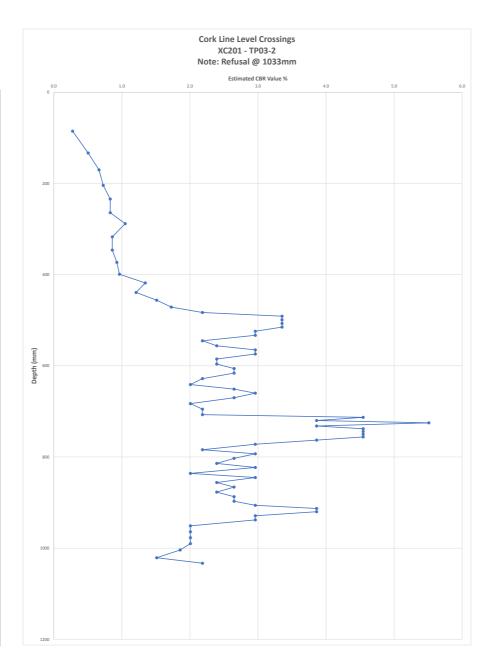
Test Start Depth	0	mm/bgl	DATE	
Start Reading:	1154	mm	14/07/2020	
No. of Blows	READING (mm)	Penetration/blow (mm)	DEPTH	CBR %
1 2	1080 1064	74 16	74 90	0.3
3 4	1046 1045	18	108 109	1.4
5	1037 1011	8 26	117 143	3.4
7 8	1006 998	5 8	148 156	5.5 3.4
9	997.5 986	0.5 11.5	156.5 168	62.8
11	975 960	11 15	179 194	2.4
13	942 938	18	212	1.4
15 16	925 913	13	229 241	2.0
17	897	16	257	1.6
18	887	10	267	
19	875	12	279	2.2
20	864	11	290	2.4
21	859	5	295	5.5
22	854	5	300	5.5
23	842	12	312	2.2
24	836	7	318	4.5
25	829		325	3.9
26	824	5	330	5.5
27	807	17	347	1.5
28	805	9	349	14.5
29	796		358	3.0
30	780	16	374	1.6
31	770	10	384	2.6
32	753	17	401	1.5
33	742	11	412	2.4
34	727	15	427	1.7
35	714	13	440	
36	709	5	445	5.5
37	693	16	461	1.6
38	685	8	469	3.4
38	674	11	480	2.4
40 41	664 655	11 10 9	480 490 499	2.4 2.6 3.0
42	647	8	507	3.4
43	642	5	512	5.5
44	631	11	523	2.4
45	625	6 4	529	4.5
46	621		533	7.0
47	620	1 4	534	30.2
48	616		538	7.0
49	611	5 7	543	5.5
50	604		550	3.9
51	594	10	560	2.6
52	592		562	14.5
53	590	2 4	564	14.5
54	586		568	7.0
55 56	580 570	6	574 584	4.5
57	567	3 2	587	9.5
58	565		589	14.5
59	561	4	593	7.0
60	556	5	598	5.5
61	550	6	604	4.5
62	545	5	609	5.5
63	536	9	618	3.0
64	532	4	622	7.0
65	528		626	7.0
66	522	6	632	4.5
67	517	5	637	5.5
68 69	510 501	7	644 653	3.9
70 71	498 489	3	656 665	9.5
72	488	1 6	666	30.2
73	482		672	4.5
74	475	7 2	679	3.9
75	473		681	14.5
76	471	2	683	14.5
77	468		686	9.5
78	464	4	690	7.0
79	460		694	7.0
80 81	459.5 457	0.5	694.5 697	62.8
82 83	452 446	5	702 708	5.5
83 84 85	446 442 437	6 4 5	708 712 717	7.0 5.5
86	433	4	721	7.0
87	428	5	726	5.5
88	425		729	9.5
89	419	6	735	4.5
90	414	5	740	5.5
91	410	8	744	7.0
92	402		752	3.4
93	396	6 8	758	4.5
94	388		766	3.4
95	383	5	771	5.5
96	377	6	777	4.5
97	363	14	791	1.9
98	353	10	801	
99	345	8	809	3.4
100	333	12	821	2.2
101 102	326 319	7 7	828 835	3.9
102	312 304	7 7 8	842 850	3.9 3.4
104 105 106	295 288	9 7	859 866	3.0
106 107 108	288 278 265	10	876	2.6 2.0
109	254	13 11	889 900	2.4
110 111	243 230	11	911 924	2.4
112	222	8	932	3.4
113	215	7	939	
114	211	4	943	7.0
115	206	5	948	5.5
116	199	7 4	955	3.9
117	195		959	7.0
118	190	5	964	5.5
119	185		969	5.5
120 121	177 169	8 8	977 985	3.4
122	161	8	993	3.4



Location	XC201 - TP03-1	Job No	19-135

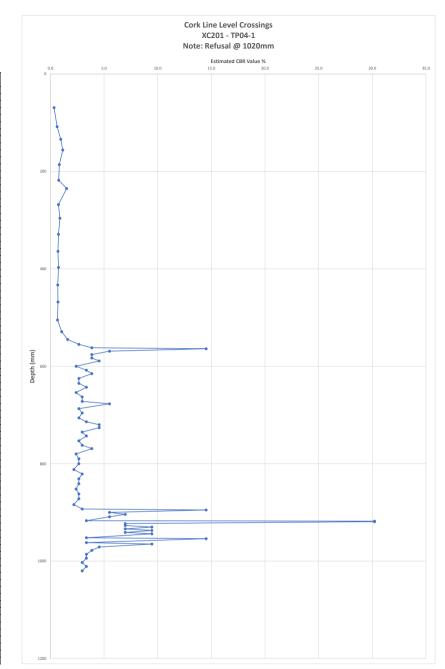
Easting	Northing	Elevation

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1143	mm	14/07/2020


No. of Blows	READING (mm)	Penetration/blow (mm)	DEPTH	CB %
1	1060	83	83	0.3
2	993	67	150	0.4
3	950	43	193	0.0
4	921	29	222	0.9
5	895	26	248	1.0
6	870	25	273	1.0
7	844	26	299	1.0
8	816	28	327	0.9
9	783	33	360	0.
10	751	32	392	0.
11	741	10	402	2.0
12	735	6	408	4.
13	725	10	418	2.
14	717	8	426	3.
15	715	2	428	14.
16	711	4	432	7.0
17	709	2	434	14.
18	706	3	437	9.
19	704	2	439	14.
20	700	4	443	7.0
21	695	5	448	5.5
22	686	9	457	3.0
23	677	9	466	3.0
24	662	15	481	1.
25	654	8	489	3.4
26	651	3	492	9.5
27	638	13	505	2.0
28	629	9	514	3.0
29	618	11	525	2.4
30	606	12	537	2.:
31	595	11	548	2.4
32	581	14	562	1.9
33	565	16	578	
34		15		1.0
	550		593	1.
35	532	18	611	1.4
36	505	27	638	0.9
37	490	15	653	1.
38	474	16	669	1.0
39	467	7	676	3.9
40	458	9	685	3.
41	449	9	694	3.
42	442	7	701	3.
43	431	11	712	2
44	426	5	717	5.
45	423	3	720	9.
46	418	5	725	5.
47	411	7	732	3.
48	404	7	739	3.
49	400	4	743	7.
50	394	6	749	4.
51	391	3	752	9.
52	386	5	757	5.
53	380	6	763	4.
54	374	6	769	4.
55	366	8	777	3.
56	361	5	782	5.
57	350	11	793	2.
58	340	10	803	2.
58	340	10	803	1.
60	309	17	834	1.
61	285	24	858	1.
62	256	29	887	0.
63	226	30	917	0.8
64	196	30	947	0.8
65	165	31	978	0.8
66	134	31	1009	0.8
67	111	23	1032	1.3

Location	XC201 - TP03-2	Job No	19-135
Feetler	No other -	Florentine	
Easting	Northing	Elevation	

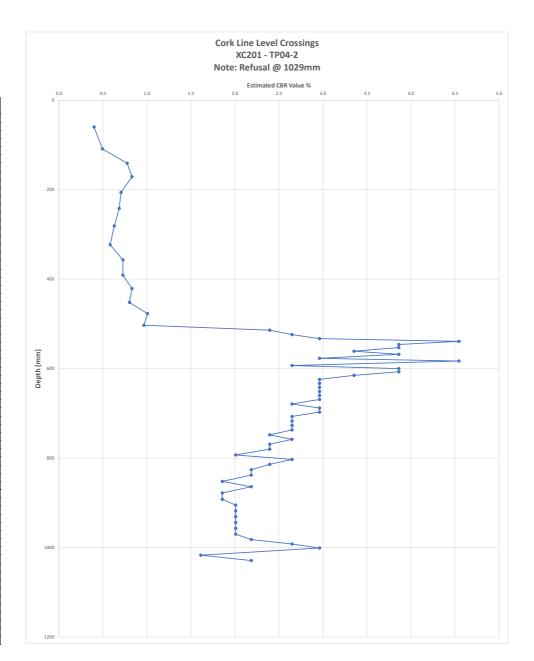
Test Start Depth	0	mm/bgl	DATE
Start Reading:	1139	mm	14/07/2020


art Reading:	1139	mm	14/07/2020	
No. of Blows	READING	Penetration/blow	DEPTH	СВ
IVO. OI BIOWS	(mm)	(mm)	DEFIII	%
1	1054	85	85	0.
2	1006	48	133	0.5
3	969	37	170	0.
4	935	34	204	0.
5	905	30	234	0.3
6	875	30	264	0.
7	851	24	288	1.0
8		29		
9	822 793	29	317 346	0.9
10	766	27	373	0.5
11	740	26	399	1.0
12	721	19	418	1.
			418	
13	700	21		1.
14	683	17	456	1.
15	668	15	471	1.
16	656	12 8	483 491	2.:
17 18	648 640	8	491	3.4
19	632	8	507	3.
20	624	8 9	515 524	3.4
21	615			3.0
22	606	9	533	3.0
23	594	12	545 556	2.:
	583			2.
25	574	9	565	3.0
26	565	9	574	3.0
27	554	11	585	2.
28	543	11	596	2.
29	533	10	606	2.0
30	523	10	616	2.0
31	511	12	628	2.:
32	498	13	641	2.0
33	488	10	651	2.
34	479	9	660	3.0
35	469	10	670	2.0
36	456	13	683	2.0
37	444	12	695	2.:
38	432	12	707	2.:
39	426	6	713	4.5
40	419	7	720	3.5
41	414	5	725	5.
42	407	7	732	3.5
43	401	6	738	4.
44	395	6	744	4.
45	389	6	750	4.
46	383	6	756	4.
47	376	7	763	3.5
48	367	9	772	3.0
49	355	12	784	2.:
50	346	9	793	3.0
51	336	10	803	2.0
52	325	11	814	2.4
53	316	9	823	3.0
54	303	13	836	2.0
55	294	9	845	3.0
56	283	11	856	2.4
57	273	10	866	2.0
58	262	11	877	2.4
59	252	10	887	2.0
60	242	10	897	2.0
61	233	9	906	3.0
62	226	7	913	3.9
63	219	7	920	3.5
64	210	9	929	3.0
65	201	9	938	3.0
66	188	13	951	2.0
67	175	13	964	2.0
68	162	13	977	2.0
69	149	13	990	
691	135	13	1004	2.0
70 71	118	17	1021	1.

Location	XC201 - TP04-1	Job No	19-135
	Northing	Elevation	

Test Start Depth	0	mm/bgl	DATE
Start Roading:	1130		14/07/2020

1	14/07/2020	mm	1139	Start Reading:
CBR	DEPTH	Penetration/blow	READING	No. of Blows
%	1	(mm)	(mm)	
0.3	69	69	1070	1
0.6	108	39	1031	2
1.0	134	26	1005	3
1.2	156	22	983	4
0.8	186	30	953	5
0.8	218	32	921	6
1.5	235	17	904	7
0.7	268	33	871	8
0.9	296	28	843	9
0.7	329	33	810	10
0.7	364	35	775	11
0.7	397	33	742	12
0.7	433	36	706	13
0.7	468	35	671	14
0.7	505	37	634	15
1.0	529	24	610	16
1.6	545	16	594	17
2.6	555	10	584	18
3.9	562	7	577	19
14.5	564	2	575	20
5.5	569	5	570	21
3.9	576	7	563	22
3.9	583	7	556	23
4.5	589	6	550	24
2.4	600	11	539	25
3.4	608	8	531	26
3.9	615	7	524	27
2.6	625	10	514	28
2.6	635	10	504	29
3.4	643	8	496	30
2.4	654	11	485	31
3.0	663	9	476	32
3.0	672	9	467	33
5.5	677	5	462	34
2.6	687	10	452	35
3.0	696	9	443	36
2.6	706	10	433	37
3.4	714	8	425	38
4.5	720	6	419	39
4.5	726	6	413	40
3.0	735	9	404	41
3.4	743	8	396	42
2.6	753	10	386	43
3.0	762	9	377	44
3.9	769	7	370	45
2.4	780	11	370	45
				46
2.6	790	10	349	
2.6	800	10	339	48
2.2	812	12	327	49
3.0	821	9	318	50
2.6	831	10	308	51
2.6	841	10	298	52
2.4	852	11	287	53
2.6	862	10	277	54
2.6	872	10	267	55
2.2	884	12	255	56
3.0	893	9	246	57
14.5	895	2	244	58
5.5	900	5	239	59
7.0	904	4	235	60
	909	5		
5.5 3.4	917	8	230 222	61 62
3.4	917 918		222	62
		1		
30.2	919	1	220	64
7.0	923	4	216	65
7.0	927	4	212	66
9.5	930	3	209	67
7.0	934	4	205	68
9.5	937	3	202	69
7.0	941	4	198	70
9.5	944	3	195	71
3.4	952	8	187	72
14.5	954	2	185	73
3.4	962	8	177	74
9.5	965	3	174	75
11 9.5	971	6	168	76
			168	76
4.5				
4.5 3.9	978	7		
4.5 3.9 3.4	978 986	8	153	78
4.5 3.9 3.4 3.4	978 986 994	8 8	153 145	78 79
3.9 3.4 3.4 3.0	978 986 994 1003	8 8 9	153 145 136	78 79 80
4.5 3.9 3.4 3.4	978 986 994	8 8	153 145	78 79



Location	XC201 - TP04-2	Job No	19-135

Easting	Northing	Elevation

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1138	mm	14/07/2020

itait iteauliig.	1130	111111	14/07/2020	J
No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	1078	60	60	0.4
2	1029	49	109	0.5
3	997	32	141	0.8
4	967	30	171	0.8
5	932	35	206	0.7
6	896	36	242	0.7
7	857	39	281	0.6
8	815	42	323	0.6
9	781	34	357	0.7
10	747	34	391	0.7
11	717	30	421	0.8
12	686	31	452	0.8
13	661	25	477	1.0
14	635	26	503	1.0
15	624	11	514	2.4
16	614	10	524	2.6
17	605	9	533	3.0
18	599	6	539	4.5
19	592	7	546	3.9
20	585	7	553	3.9
21	577	8	561	3.4
22	570	7	568	3.9
23	561	9	577	3.0
24	555	6	583	4.5
25	545	10	593	2.6
26	538	7	600	3.9
27	531	7	607	3.9
28	523	8	615	3.4
29	514	9	624	3.0
30	505	9	633	3.0
31	496	9	642	3.0
32	487	9	651	3.0
33	478	9	660	3.0
34	469	9	669	3.0
35	459	10	679	2.6
36	450	9	688	3.0
37	441	9	697	3.0
38	431	10	707	2.6
39	421	10	717	2.6
40	411	10	727	2.6
41	401	10	737	2.6
42	390	11	748	2.4
43	380	10	758	2.6
44	369	11	769	2.4
45	358	11	780	2.4
46	345	13	793	2.0
47	335	10	803	2.6
48	324	11	814	2.4
49	312	12	826	2.2
50	300	12	838	2.2
51	286	14	852	1.9
52	274	12	864	2.2
53	260	14	878	1.9
54	246	14	892	1.9
55	233	13	905	2.0
56	220	13	918	2.0
57	207	13	931	2.0
58	194	13	944	2.0
59	181	13	957	2.0
60	168	13	970	2.0
61	156	12	982	2.2
62	146	10	992	2.2
			1001	3.0
63	137	9		
63 64 65	137 121 109	16 12	1017 1029	1.6

Appendix F Water Purging Data & Logs

	I.E - Cork Line 19-135			h (m) r (m) r2 TWV (m3)	6 0.0505 0.00255025 0.048071192
BH ID:	XC201-CPRC01A		Theoretical Well Volume	48.07	ltrs
Depth to Response Zone:	, , , , ,	Bottom (mbgl)	TWV x3	144.21	ltrs
	4	10			
Purge Start Time:	15:38			(mbgl)	
Purge Finish Time:	16:30		Depth to Water	1.06	
			Total Depth	7.23	
Depth to water after purging:		mbgl			
	Time Taken to fill 25ltr container(mins)	Flow Rate I/min		Date	06/08/2020
		Trow nate if min		_	00/00/2020
Reading 1:	4	5			
Reading 2:	4	5			
Reading 3:	4	5			
Nr of Containers filled:		9	•		
W of containers fined.					
Total Volume Purged:		180	litres		
	<u></u>			T	
	Temperature	₽H	Electrical Conductivity	Dissolved Oxygen	Redox Potential
Reading 1	18.23	5.93	17.79	0.53	23.9
Reading 2	16.4	6.02	14.34	0.55	20.8
Reading 3 Reading 4	14.76	6.12	12.09	0.57	18.6
nedulik 4	14.4	6.46	15.63	0.51	17.4
Ponding F			l		
Reading 5	14.04	6.36	14.22	0.56	20.6
Reading 6	13.57	6.39	14.86	0.56	21.2
Reading 6 Reading 7	13.57 13.15	6.39 6.54	14.86 18.63	0.56 0.57	21.2 21.6
Reading 6 Reading 7 Reading 8	13.57 13.15 13.11	6.39 6.54 6.55	14.86 18.63 13.87	0.56 0.57 0.57	21.2 21.6 21.7
Reading 6 Reading 7 Reading 8 Reading 9	13.57 13.15 13.11 12.84	6.39 6.54 6.55 6.52	14.86 18.63 13.87 15.45	0.56 0.57 0.57 0.57	21.2 21.6 21.7 22
Reading 6 Reading 7 Reading 8	13.57 13.15 13.11	6.39 6.54 6.55	14.86 18.63 13.87	0.56 0.57 0.57	21.2 21.6 21.7

	Т	Job Name: I.E - Cork Line Job Nr: 19-135					
16.02 Its	Theoretical Well Volume		XC201-CPRC02	BH ID:			
48.07 <i>l</i> ti	TWV x3	Bottom (mbgl)	Top (mbgl)	Depth to Response Zone:			
		4	2				
(mbgl)			11:18	Purge Start Time:			
1.1	Depth to Water		12:55	Purge Finish Time:			
3.87	Total Depth						
		mbgl	3.53	Depth to water after purging:			
Date _		Flow Rate I/min	Time Taken to fill 25ltr container(mins)				
	(Pumping from water column)	~5.5	3.5+	Reading 1:			
	(Pumping from water column)	~5	4	Reading 2:			
	(Flow slows after pumping c.50L)	0.9	2.2	Reading 3:			
		5.75	[Nr of Containers filled:			
	litres	115	[Total Volume Purged:			
Dissolved Oxygen	Electrical Conductivity	₀H	Temperature				
0.39	21.11		19.36 to 17.43	Reading 1			
0.42		6.69		Reading 2			
0.42	21.64	6.81	13.79	Reading 3			
0.42	21.28	6.83	13.67	Reading 4			
0.41	25.4	6.48	15.34	Reading 5			
0.41	24.31	6.55	13.48	Reading 6			
0.41	20.23	6.62	13.76	Reading 7			
0.41	21.47	6.34	13.55	Reading 8			
	(mbgl)	Company Comp	Company Comp	11:18 (mbgl) 12:55 Depth to Water 1.1 Total Depth 3.87 3.53 mbgl Time Taken to fill 25thr container(mins) 3.5+ ~5.5 (Pumping from water column) 4 ~5 (Pumping from water column) 2.2 0.9 (Flow slows after pumping c.50L) 5.75 115 litres Temperature pH Electrical Conductivity Dissolved Oxygen 19.36 to 17.43 6.57 21.11 0.39 15.36 6.69 22.57 0.42 13.79 6.81 21.64 0.42 13.67 6.83 21.28 0.42 15.34 6.48 25.4 0.41 13.48 6.55 24.31 0.41 13.76 6.62 20.23 0.41			

Appendix G	Geotechnical Soil Laboratory Test Results

INDEX PROPERTIES - SUMMARY OF RESULTS

		Samp	le			р	p_{d}	W	< 425	W_L	W _P	lР	p ₅	
Hole No.	No.	Dept	h (m)	type	Soil Description				μm sieve					Remarks
		from	to	71		Mg	/m3	%	%	%	%		Mg/m3	
XC201-CP01	3	0.20	1.20	D	Brown slightly gravelly sandy silty CLAY.				80 s	33 a	21	12		
XC201-CP01A	5	1.20	2.00	D	Brown slightly sandy gravelly CLAY.				74 s	23 a	15	8		
XC201-CP02	3	0.20	1.20	D	Brown mottled grey slightly gravelly sandy silty CLAY.				66 s	23 a	12	11		
XC201-CP02	6	1.20	2.00	D	Brown slightly sandy gravelly CLAY.				68 s	21 a	15	6		
XC201-CPRC01	6	0.50	1.20	D	Brown mottled grey slightly gravelly sandy silty CLAY.				70 s	24 a	16	8		
XC201-CPRC01	8	1.20	2.00	D	Brown mottled grey sandy gravelly CLAY.			8.6						
XC201-CPRC01	11	2.00	3.00	D	Brown slightly sandy gravelly CLAY.				59 s	22 a	13	9		
XC201-CPRC01A	7	1.20	2.00	D	Brown slightly sandy gravelly silty CLAY.				51 s	23 b	14	9		
XC201-CPRC01A	12	2.20	2.40	D	Brown slightly sandy gravelly CLAY.			12						
XC201-CPRC01A	14	2.40	3.40		Greyish brown slightly sandy slightly clayey GRAVEL.						NP			
XC201-CPRC02	6	1.20	2.00	D	Brown slightly sandy gravelly silty CLAY.			9.2						
XC201-CPRC02	11	2.50	2.80	D	Brown slightly sandy slightly gravelly silty CLAY.			8.5						
		1		1	1	ı		1	I	1	1	ı	ı	

General notes: All above tests carried out to BS1377 : 1990 unless annotated otherwise. See Remarks for further details

Key: p bulk density, linear WL Liquid limit WP Plastic limit <425um preparation ps particle density

pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

pd dry densitya4 point cone testNP non - plasticn from natural soil-g = gas jarw moisture contentb1 point cone testIP Plasticity Indexs sieved specimen-p = small pyknometer

* test carried out to BS EN ISO 17892 h removed by hand

QA Ref SLR 1 Rev 2.95 Mar 17	
	SOCOTEC

Project No	N9387-20
Project Name	Cork Line Level Crossings

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Printed: 21/09/2020 16:08

INDX

Figure

INDEX PROPERTIES - SUMMARY OF RESULTS

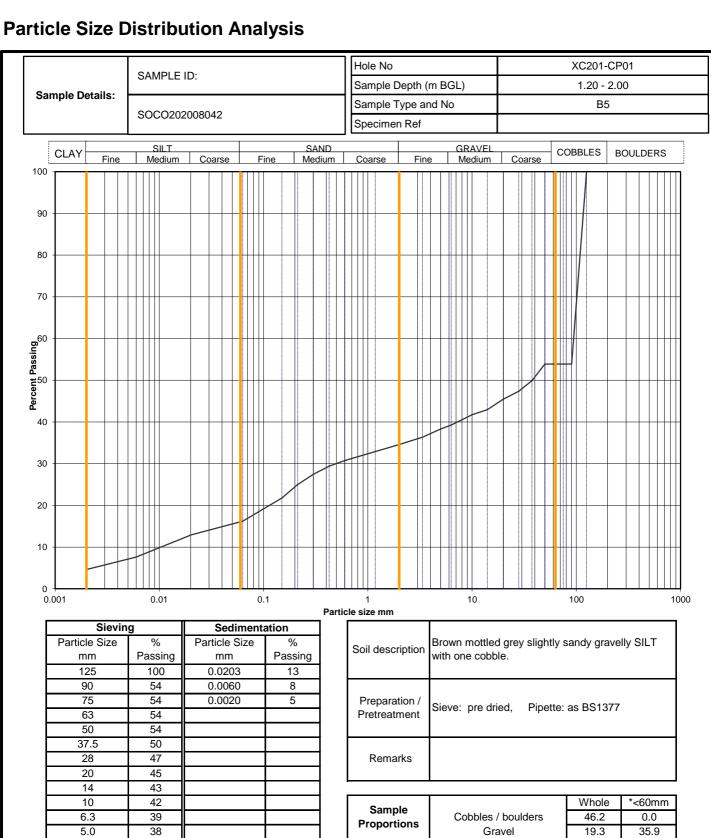
		Samp	le		Soil Description				•			, , , ,		lР	p ₅	
Hole No.	No.	Dept	h (m)	type					μm sieve					Remarks		
		from	to	,,		Mg	/m3	%	%	%	%		Mg/m3			
XC201-TP01	1	0.50	1.00	D	Brown slightly sandy gravelly CLAY.			15	61 s	25 a	15	10				
XC201-TP01	9	2.20	2.50	D	Brown slightly sandy slightly gravelly CLAY			7.2	67 s	22 a	12	10				
XC201-TP02	7	1.50	2.00	D	Brown slightly sandy slightly gravelly CLAY.			6	62 s	22 a	13	9				
XC201-TP02	9	2.60	3.10	D	Brown slightly sandy gravelly silty CLAY with one cobble			5.3	52 s	22 a	12	10				
XC201-TP03	7	1.40	1.90	D	Brown slightly sandy gravelly CLAY with one cobble			6.2	35 s	23 b	13	10				
XC201-TP03	12	3.00	3.50	D	Brown slightly sandy gravelly silty CLAY with one cobble			4.7	42 s	22 b	13	9				
XC201-TP04	4	0.60	1.10	D	Brown slightly sandy gravelly silty CLAY with one cobble			7.2	61 s	20 b	12	8				
XC201-TP04	9	2.00	2.50	D	Brown slightly sandy slightly gravelly CLAY.			9.2	63 s	23 a	14	0				

General notes: All above tests carried out to BS1377: 1990 unless annotated otherwise. See Remarks for further details

WL Liquid limit <425um preparation WP Plastic limit Key: p bulk density, linear ps particle density a 4 point cone test n from natural soil pd dry density NP non - plastic -g = gas jar

b 1 point cone test s sieved specimen IP Plasticity Index -p = small pyknometer w moisture content

* test carried out to BS EN ISO 17892 h removed by hand


QA Ref SLR 1 Rev 2.95 Mar 17	
	SOCOTEC

Project No N9425-20 Project Name

Cork Line Level Crossings

Figure **INDX**

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Sample		vvnoie	<00111111	
Proportions	Cobbles / boulders	46.2	0.0	
Froportions	Gravel	19.3	35.9	
	Sand	18.3	34.0	
*<60mm values to aid	Silt	11.6	21.6	
description only	Clay	4.6	8.6	
	<u> </u>			

L	Uniformity Coefficient	D60 / D10	9100

	BS 1377 : Part 2 : 1990				
Test Method	Sieving	9.2 wet sieve			
	Sedimentation	9.4 pipette			

QA Ref SLR 2,9 Rev 2.22 Jul 17

3.35 2.00

1.18

0.600

0.425

0.300

0.212 0.150

0.063

36

35

33

31

29

25

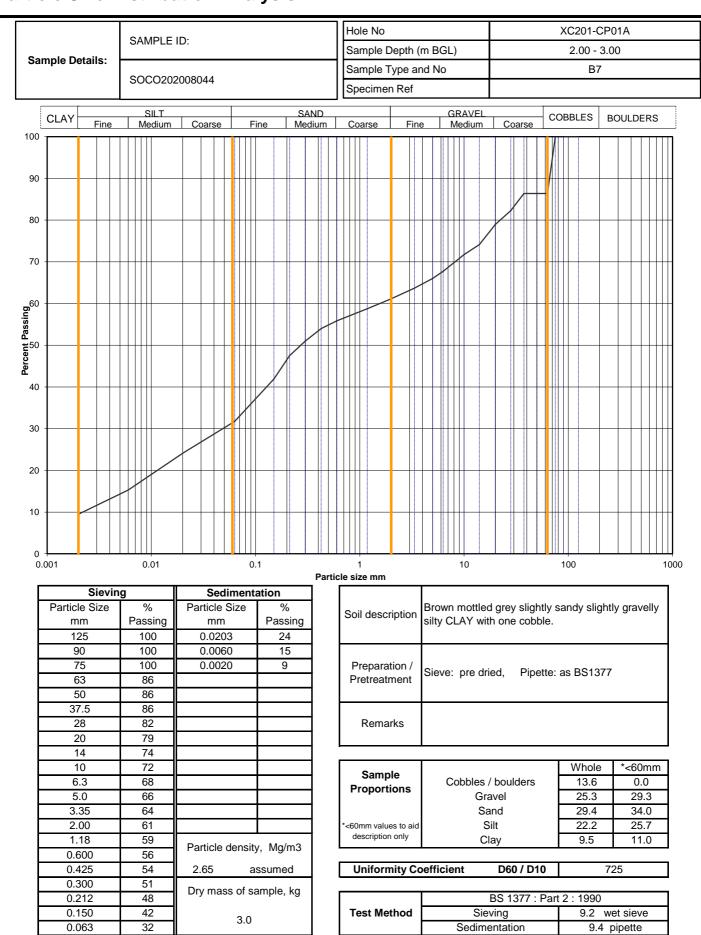
22

16

Particle density, Mg/m3

Dry mass of sample, kg

7.1


assumed

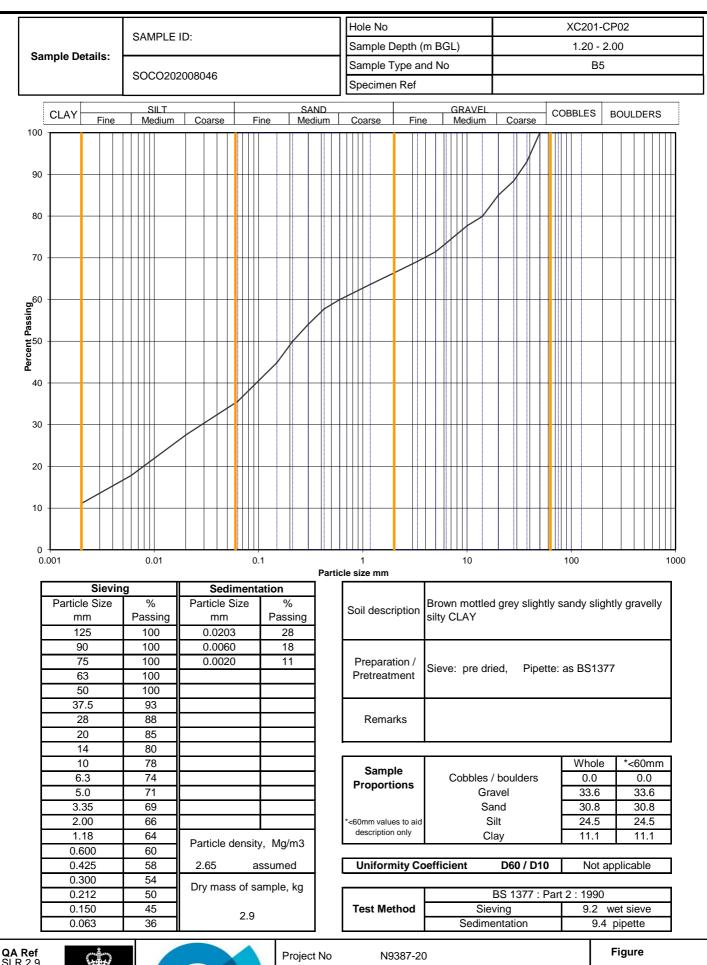
Project No N9387-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

QA Ref SLR 2,9 Rev 2.22 Jul 17


Project No N9387-20

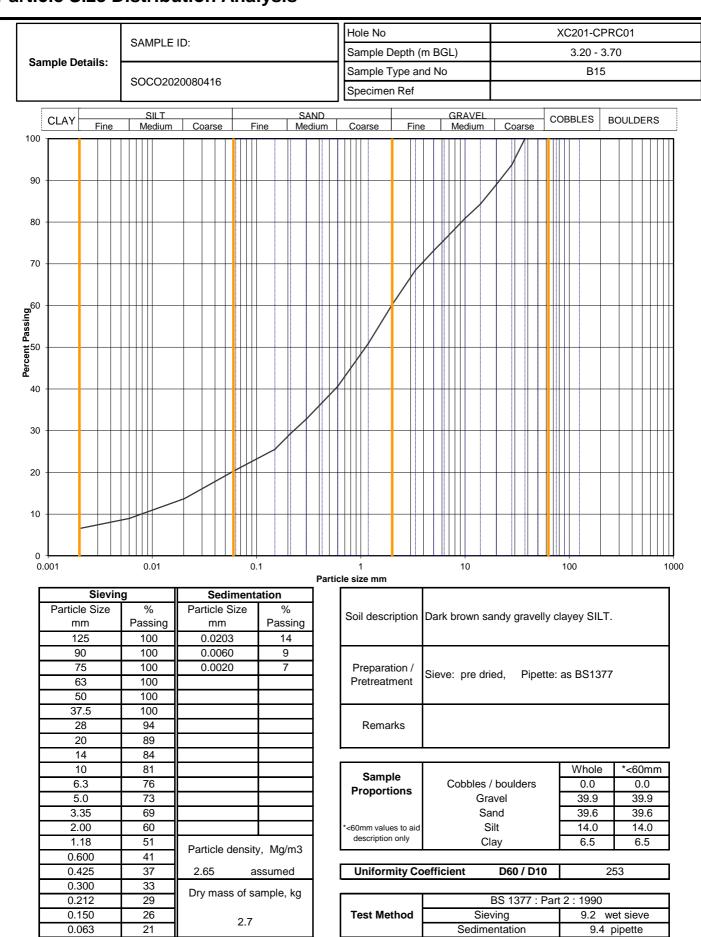
Project Name Cork Line Level Crossings

Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

QA Ref SLR 2,9 Rev 2.22 Jul 17



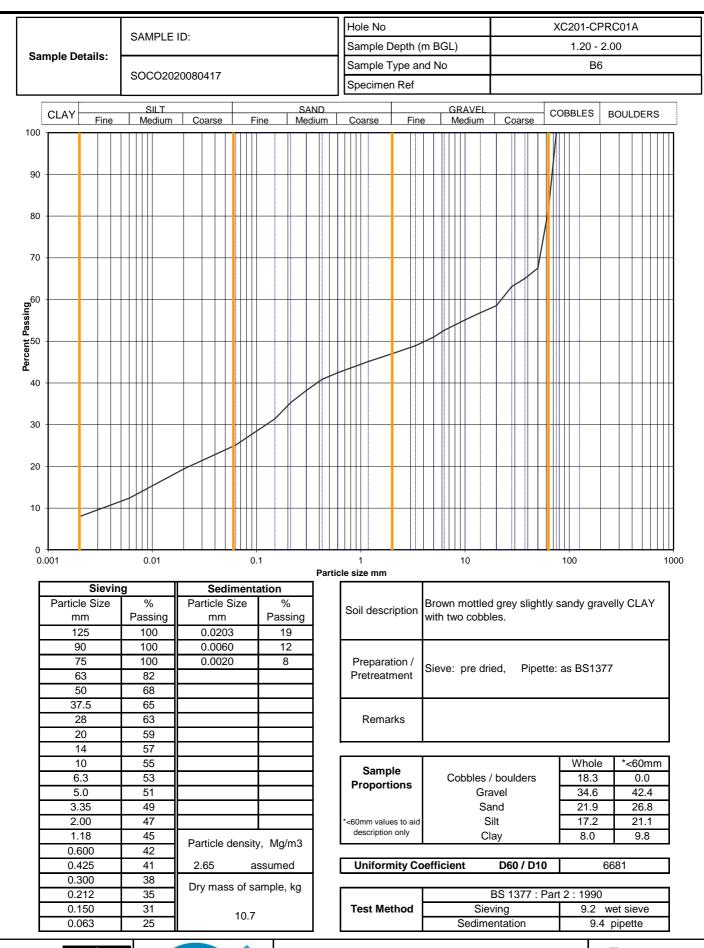
Project Name

Cork Line Level Crossings

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

QA Ref SLR 2,9 Rev 2.22 Jul 17


Project No N9387-20

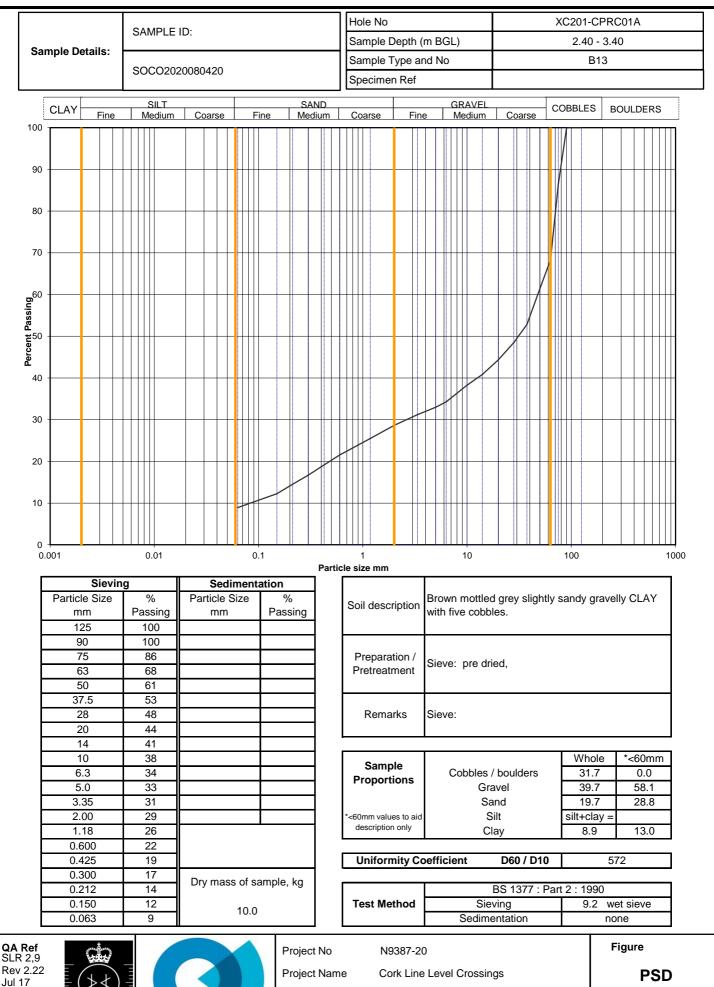
Project Name Cork Line Level Crossings

Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

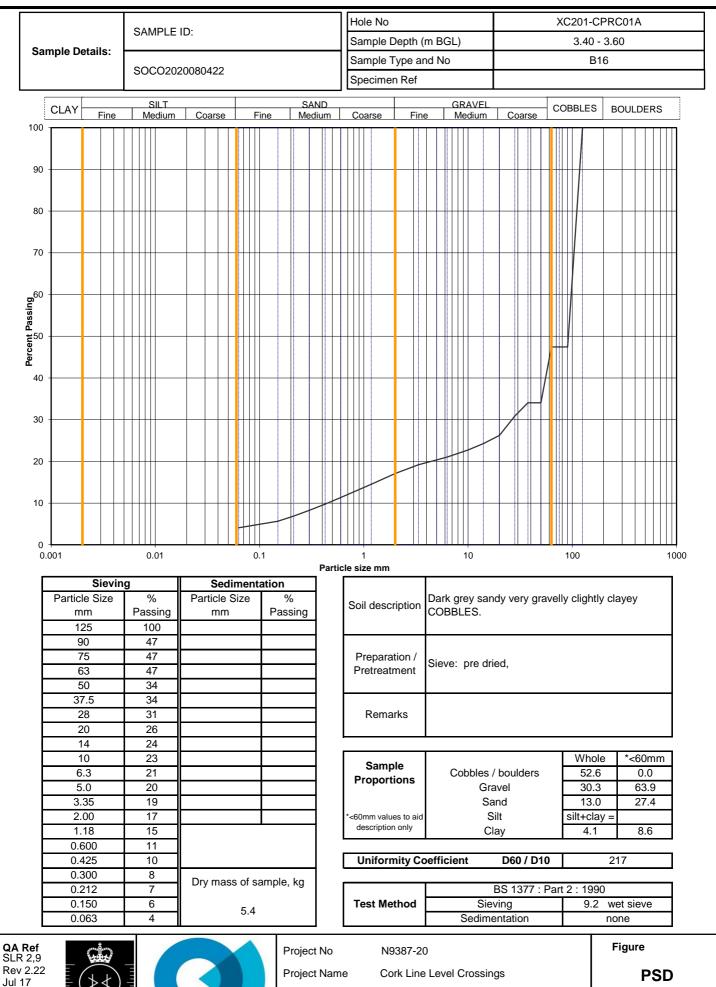
QA Ref SLR 2,9 Rev 2.22 Jul 17

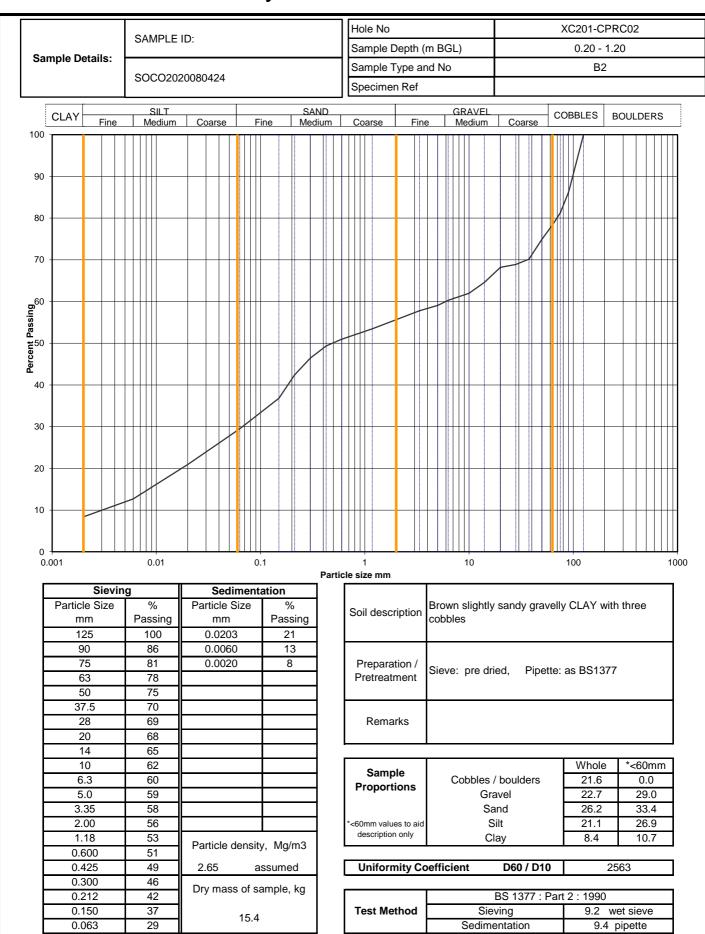


N9387-20 Project No

Project Name Cork Line Level Crossings **Figure**

PSD

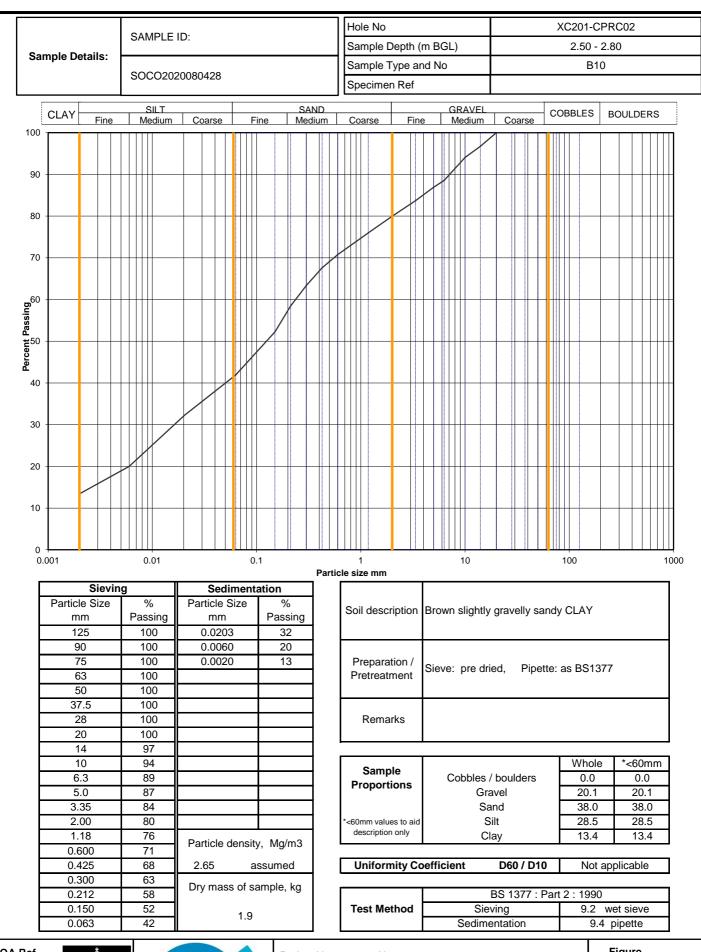

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited


SOC	OTEC

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

QA Ref SLR 2,9 Rev 2.22 Jul 17


Project No N9387-20

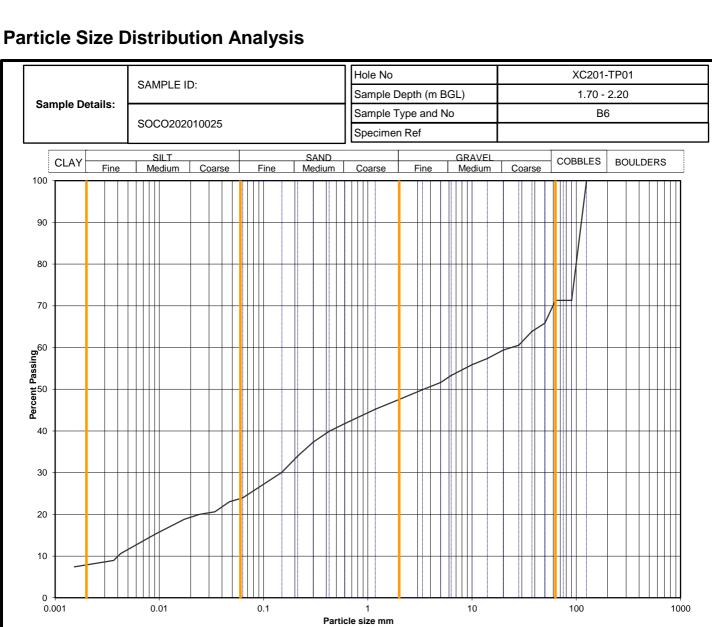
Project Name Cork Line Level Crossings

Figure

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

QA Ref SLR 2,9 Rev 2.22 Jul 17



Project No N9387-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Cinvin	 1	Cadimant	-4!
Sievin		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	24
90	71	0.0472	23
75	71	0.0341	21
63	71	0.0242	20
50	66	0.0173	19
37.5	64	0.0092	15
28	61	0.0043	11
20	59	0.0036	9
14	57	0.0015	7
10	56		
6.3	53		
5.0	52		
3.35	50		
2.00	48		
1.18	45	Partiala danaity Ma/m3	
0.600	42	Particle density, Mg/m3	
0.425	40	2.65 assumed	
0.300	37	Dry mass of sample, kg	
0.212	34	Diyillass 01 Sa	ampie, ky
0.150	30	6.6	
0.063	24	0.0	

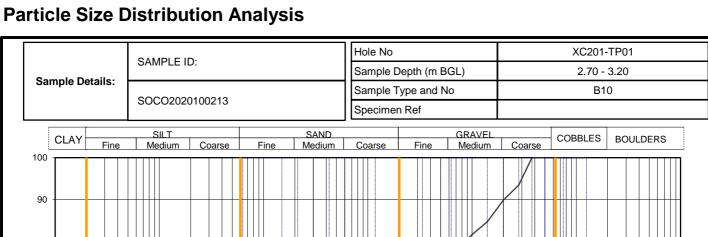
Soil description	Brown slightly sandy slightly gravelly CLAY with one cobble.
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377
Remarks	

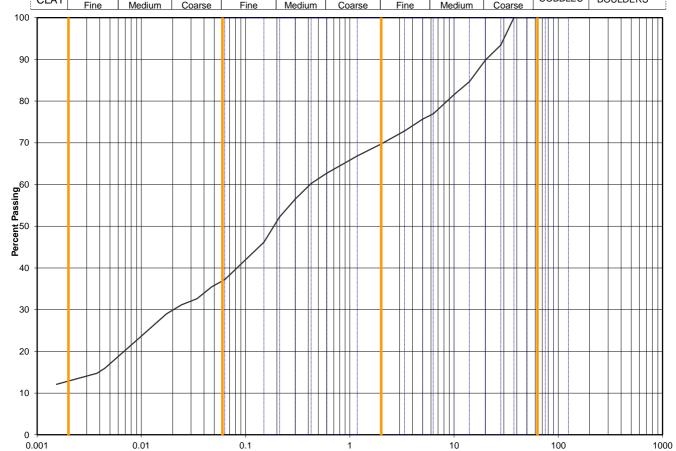
Sample		Whole	*<60mm
Proportions	Cobbles / boulders	28.6	0.0
Froportions	Gravel	23.8	33.3
	Sand	23.6	33.1
*<60mm values to aid	Silt	16.1	22.5
description only	Clay	7.9	11.1

Uniformity Coefficient	D60 / D10	6639

	BS 1377 : Part 2 : 1990			
Test Method	Sieving	9.2 wet sieve		
	Sedimentation	9.5 hydrometer		

QA Ref SLR 2,9 Rev 2.22 Jul 17




Project No N9425-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Particle size mm

Sieving		Sedimentation	
Particle Size	%	Particle Size %	
mm	Passing	mm	Passing
125	100	0.0630	37
90	100	0.0475	36
75	100	0.0342	33
63	100	0.0243	31
50	100	0.0174	29
37.5	100	0.0093	23
28	93	0.0045	16
20	90	0.0037	15
14	85	0.0015	12
10	82		
6.3	77		
5.0	76		
3.35	73		
2.00	70		
1.18	67	Particle density	/ Ma/m3
0.600	63	Particle density, Mg/m3	
0.425	60	2.65 assumed	
0.300	57	Dry mass of sample, kg	
0.212	52	Dry mass of sample, kg	
0.150	46	3.2	
0.063	37] 3.2	

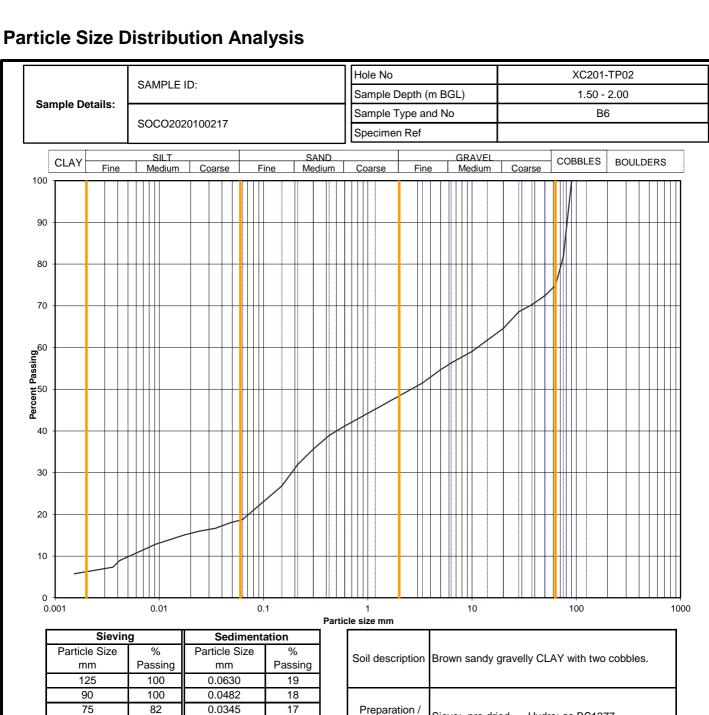
Soil description	Brown slightly sandy slightly gravelly CLAY.	
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
Remarks		

Sample		Whole	*<60mm
Proportions	Cobbles / boulders	0.0	0.0
Froportions	Gravel	30.3	30.3
	Sand	32.5	32.5
*<60mm values to aid	Silt	24.3	24.3
description only	Clay	12.9	12.9

Uniformity Coefficient	D60 / D10	Not applicable
------------------------	-----------	----------------

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref SLR 2,9 Rev 2.22 Jul 17



Project No N9425-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

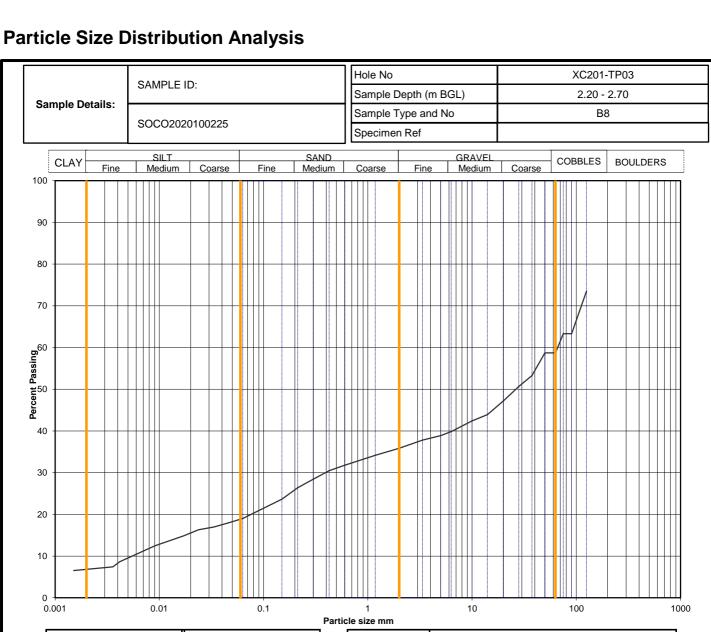
Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	19
90	100	0.0482	18
75	82	0.0345	17
63	75	0.0246	16
50	72	0.0175	15
37.5	70	0.0093	13
28	69	0.0042	9
20	65	0.0036	7
14	62	0.0015	6
10	59		
6.3	56		
5.0	55		
3.35	52		
2.00	48		
1.18	45	Particle density	, Ma/m3
0.600	41	Particle density, Mg/m3	
0.425	39	2.65 assumed	
0.300	36	Dry mass of sample ka	
0.212	32	Dry mass of sample, kg	
0.150	27	13.7	
0.063	19	13.7	

Soil description	Brown sandy gravelly CLAY with two cobbles.	
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
Remarks		

Sample		Whole	*<60mm
Proportions	Cobbles / boulders	25.1	0.0
Froportions	Gravel	26.5	35.4
	Sand	29.6	39.5
*<60mm values to aid	Silt	12.5	16.7
description only	Clay	6.3	8.4

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref SLR 2,9 Rev 2.22 Jul 17



Project No N9425-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

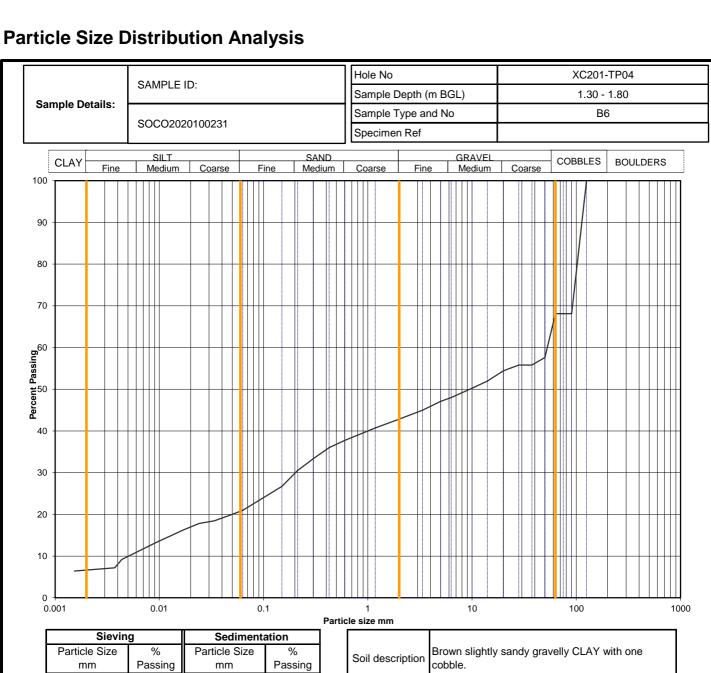
Sieving Sedimentation Particle Size Particle Size Passing Passing mm mm 74 0.0630 19 125 63 90 0.0466 18 75 63 0.0334 17 63 59 0.0238 16 59 0.0171 50 15 37.5 53 0.0091 12 28 51 0.0042 9 20 47 0.0036 7 14 44 0.0015 7 42 10 40 6.3 39 5.0 3.35 38 2.00 36 1.18 34 Particle density, Mg/m3 0.600 32 0.425 30 assumed 0.300 28 Dry mass of sample, kg 0.212 26 24 0.150 13.2 0.063 19

Soil description	Brown slightly sandy gravelly CLAY with three cobbles.	
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
Remarks		

Sample		Whole	*<60mm
Proportions	Cobbles / boulders	41.3	0.0
Proportions	Gravel	22.8	38.8
	Sand	16.9	28.8
*<60mm values to aid	Silt	12.2	20.8
description only	Clay	6.8	11.6

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref SLR 2,9 Rev 2.22 Jul 17



Project No N9425-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	21
90	68	0.0472	20
75	68	0.0339	18
63	68	0.0241	18
50	58	0.0173	16
37.5	56	0.0092	13
28	56	0.0044	9
20	54	0.0037	7
14	52	0.0015	6
10	50		
6.3	48		
5.0	47		
3.35	45		
2.00	43		
1.18	41	Partiala danait	, Ma/m2
0.600	38	Particle density, Mg/m3	
0.425	36	2.65 a	ssumed
0.300	33	Dry mass of sample 1/2	
0.212	30	Dry mass of sample, kg	
0.150	27	6.1	
0.063	21		

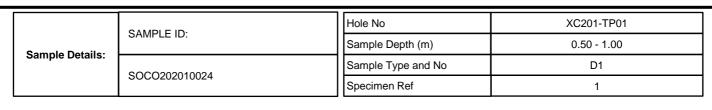
s	Soil description	Brown slightly sandy gravelly CLAY with one cobble.	
	Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
	Remarks		

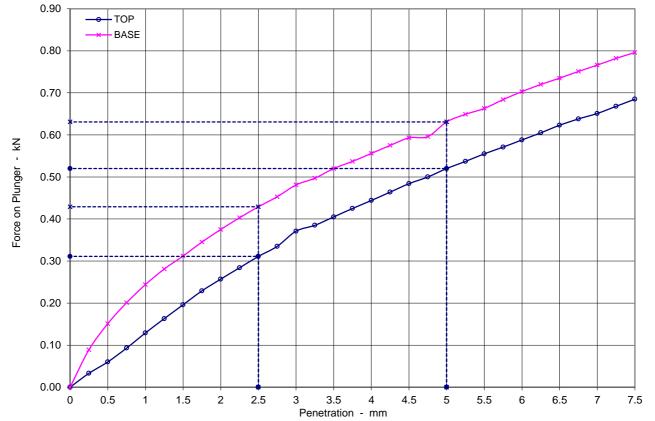
Sample		Whole	*<60mm
Proportions	Cobbles / boulders	31.9	0.0
Troportions	Gravel	25.3	37.2
	Sand	21.9	32.2
*<60mm values to aid	Silt	14.3	21.0
description only	Clay	6.6	9.7

Uniformity	Coefficient	D60 / D10	10348

	BS 1377 : Part 2 : 1990		
Test Method	Sieving	9.2 wet sieve	
	Sedimentation	9.5 hydrometer	

QA Ref SLR 2,9 Rev 2.22 Jul 17


Project No N9425-20


Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

California Bearing Ratio (BS1377:1990:Part 4, section 7)

Soil description Brown slightly sandy gravelly CLAY.

Test Conditions		
Sample Retained on 20 mm sieve	%	17

	Method of Compaction		
Preparation	Remoulded - Rammer compaction to specified density (2.5kg)		
гера	Soaked test	NO	
Ы	Soaking Period days	N/A	
	Amount of Swell mm	N/A	

Surcharge applied	kg	0
Surcharge applied	kPa	0

Notes: @-2 OF NMC

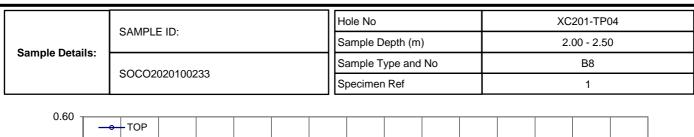
Sample Conditions		
Initial Moisture Content	%	12.0
Bulk Density	Mg/m³	1.97
Dry Density	Mg/m³	1.77
Moisture Content - TOP	%	11.0
Moisture Content - BASE	%	12.0

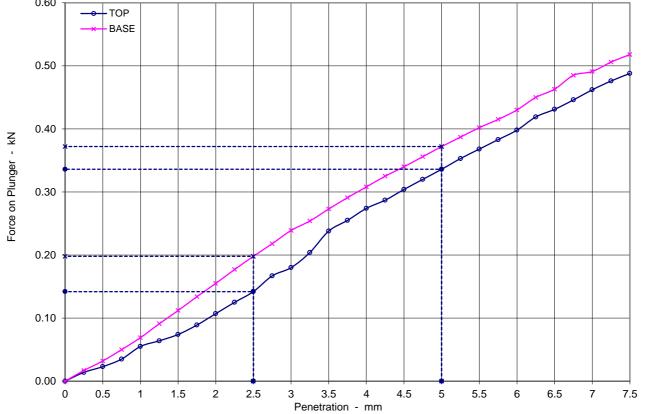
Penetration mm	CBR Values %		
	TOP	BASE	
2.5	2.4	3.3	
5	2.6	3.2	

Accepted CBR %	2.6	3.3
----------------	-----	-----

QA Ref SLR 4.7 Rev 2.8 Mar 17

0
SOCOTEC


Project No	
Project Name	


N9425-20 Cork Line Level Crossings Figure

CBR

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

California Bearing Ratio (BS1377:1990:Part 4, section 7)

Soil description Brown slightly sandy slightly gravelly CLAY.

Test Conditions		
Sample Retained on 20 mm sieve	%	0

	Method of Compaction		
Preparation	Remoulded - Rammer compaction to specified density (2.5kg)		
гера	Soaked test		NO
Ы	Soaking Period da	ys	N/A
	Amount of Swell m	nm	N/A

Surcharge applied	kg	0
Surcharge applied	kPa	0

N	\sim	tο	0	٠

Sample Conditions		
Initial Moisture Content	%	10.0
Bulk Density	Mg/m³	2.12
Dry Density	Mg/m³	1.92
Moisture Content - TOP	%	10.0
Moisture Content - BASE	%	10.0

Penetration mm	CBR Values %	
	TOP	BASE
2.5	1.1	1.5
5	1.7	1.9

Accepted CBR %	1.7	1.9
----------------	-----	-----

QA Ref SLR 4.7 Rev 2.8 Mar 17

SOCOTEC

ı	Project No
ı	Project Name

N9425-20 Cork Line Level Crossings Figure

CBR

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Certificate Number 20-14518

12-Aug-20

Client Socotec - Geotechnical Lab

Askern Road Doncaster DN6 8DG

Our Reference 20-14518

Client Reference N9387-20

Order No (not supplied)

Contract Title Cork Line Level Crossing

Description 3 Soil samples.

Date Received 06-Aug-20

Date Started 06-Aug-20

Date Completed 12-Aug-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-14518
Client Ref N9387-20
Contract Title Cork Line Level Crossing

Lab No	1708692	1708693	1708694
Sample ID	CPRC01A	CP01	CPRC02
Depth	3.40-3.60	0.20-1.20	2.80-3.30
Other ID	D17	B2	D13
Sample Type	SOIL	SOIL	SOIL
Sampling Date	05/08/2020	05/08/2020	05/08/2020
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Metals						
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	19	< 10	< 10
Inorganics						
рН	DETSC 2008#		рН	7.9	7.7	8.4
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l	< 10	< 10	< 10
Chloride Aqueous Extract	DETSC 2055	1	mg/l	14	11	14
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	< 1.0	6.4	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	970	280	32
Sulphur as S, Total	DETSC 2320	0.01	%	0.12	0.04	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.22	0.10	0.04

Information in Support of the Analytical Results

Our Ref 20-14518 Client Ref N9387-20

Contract Cork Line Level Crossing

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1708692	XC201-CPRC01A 3.40-3.60	05/08/20	PT 1L		
	SOIL				
1708693	XC201-CP01 0.20-1.20	05/08/20	PT 1L		
	SOIL				
1708694	XC201-CPRC02 2.80-3.30	05/08/20	PT 1L		
	SOIL				

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate Number 20-17748

21-Sep-20

Client Socotec

INFRASTRUCTURE SERVICES

Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

Our Reference 20-17748

Client Reference N9387

Order No N20-O-2186

Contract Title Corkline Level Crossing

Description One Soil sample.

Date Received 15-Sep-20

Date Started 15-Sep-20

Date Completed 21-Sep-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-17748
Client Ref N9387
Contract Title Corkline Level Crossing

Lab No	1726717
	CX201-
Sample ID	CPRC02
Depth	1.20-2.00
Other ID	D6
Sample Type	SOIL
Sampling Date	14/09/2020
Sampling Time	n/s

rest	ivietnoa	LOD	Units	
Inorganics				
рН	DETSC 2008#		рН	8.3
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	19
Sulphur as S, Total	DETSC 2320	0.01	%	0.02
Sulphate as SO4. Total	DETSC 2321#	0.01	%	0.05

Information in Support of the Analytical Results

Our Ref 20-17748 Client Ref N9387

Contract Corkline Level Crossing

Containers Received & Deviating Samples

		Data		J	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1726717	CX201-CPRC02 1.20-2.00	14/09/20	PT 1L		
	SOIL				

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Appendix H	Environmental Laboratory Test Results

Environmental Chemistry SOCOTEC UK Ashby Rd, Bretby, Burton-on-Trent, UK DE15 0YZ

Certificate of Analysis

Project No: 20071478

Client: OCB Geotechnical Limited

Quote Number: BEC200710078

Project Reference: Irish Rail - Cork Line

Site Name: 19-135

Contact: Ian Holley

Address: Unit 1

Carrigogna Midleton County Cork

Post Code: Ireland

E-Mail: iholley@ocbgeotechnical.com

Phone No: 021 4638474

Number of Samples Received: 3

Date Received: 30/07/2020

Analysis Date: 11/08/2020

Date Issued: 11/08/2020

Job Status: Complete

Report Type: Final Version 01

This report supersedes any versions previously issued by the laboratory

Account Manager

Martin Elliott-Palmer

11001

Authorised by the Operations Manager Becky Batham

Project Name: 19-135 Project No: 20071478

Date Issued: 11/08/2020

Samples Analysed

Sample Reference	Text ID	Sample Date	Sample Type
XC201-TP04-1-ES-0.05-0.05	20071478-001	03/07/2020 17:00:00	SOLID
XC201-TP04-2-ES-0.50-0.50	20071478-003	03/07/2020 18:00:00	SOLID
XC201-TP04-5-ES-1.00-1.00	20071478-005	03/07/2020 19:00:00	SOLID

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

Analysis Results

				Project ID	20071478				
				Sample ID	001 003			005	
				Customer ID	XC201-TP04-1	-ES-0.05-0.05	XC201-TP04-2	-ES-0.50-0.50	XC201-TP04-5-ES-1.0
				Sample Type	LPL	SOLID	LPL	SOLID	ĹPĹ
				Sampling Date	03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020
Analysis	Method Code	MDL	Units	Accred					
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100		<0.100
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		<0.005		<0.005
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100		<0.100
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.02	mg/l	N	<0.020		<0.020		<0.020
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100		<0.100
C5-C7 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		<0.005		<0.005
Total GRO	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100		<0.100		<0.100
Free Cyanide	SFAPI	0.02	mg/l	U	<0.02		<0.02		<0.02
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		<0.001		<0.001
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U	<0.00002		<0.00002		<0.00002
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		<0.001		<0.001
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U	0.001		<0.001		<0.001
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		<0.001		<0.001
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U	<0.00003		<0.00003		<0.00003
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		<0.001		<0.001
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		<0.001		<0.001
Vanadium as V	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		0.002		<0.001
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U	<0.002		0.004		<0.002
Barium as Ba	ICPWATVAR (Dissolved)	0.01	mg/l	U	<0.01		<0.01		<0.01
Beryllium as Be	ICPWATVAR (Dissolved)	0.01	mg/l	N	<0.01		<0.01		<0.01
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U	<0.01		<0.01		<0.01
Benzene	BTEXHSA	5	μg/l	N	<5		<5		<5
Ethylbenzene	BTEXHSA	5	μg/l	N	<5		<5		<5
m/p-Xylene	BTEXHSA	10	μg/l	N	<10		<10		<10
o-Xylene	BTEXHSA	5	μg/l	N	<5		<5		<5

FINAL_COA_01 Page 3 of 11

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

Analysis Results

				Project ID		20071478
				Sample ID	005	
				Customer ID	XC201-TP04-5-ES-1.00	
				Sample Type	SÓLÍD	
				Sampling Date	03/07/2020	
						-
Analysis	Method Code	MDL	Units	Accred		
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N		-
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N		-
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N		·
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.02	mg/l	N		-
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N		·
C5-C7 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N		-
Total GRO	GROHSA/BTEXHSA	0.1	mg/l	U		·
Free Cyanide	SFAPI	0.02	mg/l	U		-
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U		
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U		-
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U		
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U		-
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U		
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U		-
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U		
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U		
Vanadium as V	ICPMSW (Dissolved)	0.001	mg/l	U		
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U		
Barium as Ba	ICPWATVAR (Dissolved)	0.01	mg/l	U		
Beryllium as Be	ICPWATVAR (Dissolved)	0.01	mg/l	N		
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U		
Benzene	BTEXHSA	5	μg/l	N		•
Ethylbenzene	BTEXHSA	5	μg/l	N		<u> </u>
m/p-Xylene	BTEXHSA	10	μg/l	N		•
o-Xylene	BTEXHSA	5	μg/l	N		

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

Analysis Results

				Project ID			20071478			
				Sample ID	001			03	005	
				Customer ID	XC201-TP04-	1-ES-0.05-0.05	XC201-TP04-2	2-ES-0.50-0.50	XC201-TP04-5-ES-1.0	
				Sample Type	LPL	SOLID	LPL SOLID		ĹPĹ	
				Sampling Date	03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020	
Analysis	Method Code	MDL	Units	Accred						
Toluene	BTEXHSA	5	μg/l	N	<5		<5		<5	
Acenaphthene	PAHMSW	0.01	μg/l	U	0.06		0.12		<0.02	
Acenaphthylene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Anthracene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Benzo[a]anthracene	PAHMSW	0.01	μg/l	U	0.08		<0.02		<0.02	
Benzo[a]pyrene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Benzo[b]fluoranthene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Benzo[g,h,i]perylene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		< 0.02	
Benzo[k]fluoranthene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Chrysene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Dibenzo[a,h]anthracene	PAHMSW	0.01	μg/l	U	<0.02		<0.02		<0.02	
Fluoranthene	PAHMSW	0.01	μg/l	U	0.19		<0.02		<0.02	
Fluorene	PAHMSW	0.01	μg/l	U	0.04		0.06		<0.02	
Indeno[1,2,3-cd]pyrene	PAHMSW	0.01	μg/l	U	<0.02*		<0.02*		<0.02*	
Naphthalene	PAHMSW	0.01	μg/l	U	0.28		0.21		0.17	
Phenanthrene	PAHMSW	0.01	μg/l	U	0.18		0.04		<0.02	
Pyrene	PAHMSW	0.01	μg/l	U	0.29		0.02		<0.02	
Total PAH 16	PAHMSW	0.16	μg/l	U	<1.25		<0.62		<0.42	
>C10-C12 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	16.5		2.06		0.44	
>C12-C16 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01		<0.02		<0.02	
>C16-C21 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	5.21		0.64		0.14	
>C21-C35 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	4.31		0.62		0.14	
>C35-C44 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	N	0.04		0.11		<0.02	
Total TPH (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01		0.11		<0.02	
>C10-C12 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	0.02		<0.02		<0.02	

FINAL_COA_01 Page 5 of 11

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

Analysis Results

				Project ID	
				Sample ID	005
				Customer ID	XC201-TP04-5-ES-1.00
				Sample Type	SOLID
				Sampling Date	03/07/2020
Analysis	Method Code	MDL	Units	Accred	
Toluene	BTEXHSA	5		N	
Acenaphthene	PAHMSW	0.01	μg/l	U	
			μg/l		
Acenaphthylene	PAHMSW	0.01	μg/l	U	
Anthracene	PAHMSW	0.01	μg/l	U	
Benzo[a]anthracene	PAHMSW	0.01	μg/l	U	
Benzo[a]pyrene	PAHMSW	0.01	μg/l	U	
Benzo[b]fluoranthene	PAHMSW	0.01	μg/l	U	
Benzo[g,h,i]perylene	PAHMSW	0.01	μg/l	U	
Benzo[k]fluoranthene	PAHMSW	0.01	μg/l	U	
Chrysene	PAHMSW	0.01	μg/l	U	
Dibenzo[a,h]anthracene	PAHMSW	0.01	μg/l	U	
Fluoranthene	PAHMSW	0.01	μg/l	U	
Fluorene	PAHMSW	0.01	μg/l	U	
Indeno[1,2,3-cd]pyrene	PAHMSW	0.01	μg/l	U	
Naphthalene	PAHMSW	0.01	μg/l	U	
Phenanthrene	PAHMSW	0.01	μg/l	U	
Pyrene	PAHMSW	0.01	μg/l	U	
Total PAH 16	PAHMSW	0.16	μg/l	U	
>C10-C12 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	
>C12-C16 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	
>C16-C21 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	
>C21-C35 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	
>C35-C44 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	N	
Total TPH (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	
>C10-C12 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

Analysis Results

				20071478						
				Sample ID	(001	0	03	005	
				Customer ID	XC201-TP04	-1-ES-0.05-0.05	XC201-TP04-	2-ES-0.50-0.50	XC201-TP04-5-ES-1.00	
				Sample Type	LPL	SOLID	LPL	SOLID	ĹPĹ	
				Sampling Date	03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020	
Analysis	Method Code	MDL	Units	Accred						
>C12-C16 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01		<0.02		<0.02	
>C16-C21 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	0.03		<0.02		<0.02	
>C21-C35 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	4.20		0.55		0.14	
>C35-C44 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	N	0.18		<0.02		<0.02	
Total TPH (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	4.29		0.56		0.16	
Benzene	VOCHSAW	1	μg/l	N	<1		<1		<1	
Ethylbenzene	VOCHSAW	1	μg/l	N	<1		<1		<1	
m and p-Xylene	VOCHSAW	1	μg/l	N	<1		<1		<1	
MTBE	VOCHSAW	1	μg/l	N	<1		<1		<1	
o-Xylene	VOCHSAW	1	μg/l	N	<1		<1		<1	
Toluene	VOCHSAW	1	μg/l	N	<1		<1		<1	
Equivalent Weight of Dry Material (kg)	Leachate Preparation CEN 10:1		kg	N		0.090		0.090		
Fraction above 4mm (%)	Leachate Preparation CEN 10:1		%	N		0		0		
Fraction of non-crushable material (%)	Leachate Preparation CEN 10:1		%	N		0		0		
Volume of Water for 10:1 Leach (ltr)	Leachate Preparation CEN 10:1		I	N		0.865		0.893		
Weight of Sample Leached (kg)	Leachate Preparation CEN 10:1		kg	N		0.125		0.097		

FINAL_COA_01 Page 7 of 11

Project Name: 19-135

Project No: 20071478 Date Issued: 11/08/2020

Analysis Results

				Project ID		20071478
				Sample ID	005	2007.1.10
				Customer ID	XC201-TP04-5-ES-1.00	
				Sample Type	SÓLÍD	
				Sampling Date	03/07/2020	
Analysis	Method Code	MDL	Units	Accred		
>C12-C16 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
>C16-C21 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
>C21-C35 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
>C35-C44 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	N		
Total TPH (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
Benzene	VOCHSAW	1	μg/l	N		
Ethylbenzene	VOCHSAW	1	μg/l	N		
m and p-Xylene	VOCHSAW	1	μg/l	N		
MTBE	VOCHSAW	1	μg/l	N		
o-Xylene	VOCHSAW	1	μg/l	N		
Toluene	VOCHSAW	1	μg/l	N		
Equivalent Weight of Dry Material (kg)	Leachate Preparation CEN 10:1		kg	N	0.090	
Fraction above 4mm (%)	Leachate Preparation CEN 10:1		%	N	30.2	
Fraction of non-crushable material (%)	Leachate Preparation CEN 10:1		%	N	0	
Volume of Water for 10:1 Leach (ltr)	Leachate Preparation CEN 10:1		1	N	0.891	
Weight of Sample Leached (kg)	Leachate Preparation CEN 10:1		kg	N	0.099	

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID-SI	001,003,005 ,007	Due to a limited amount of sample, a lower volume was used to complete the analysis. This resulted in a raised detection limit for these samples.
PAHMSW	001,003,005 ,007	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Indeno[1,2,3-cd[pyrene) . These circumstances should be taken into consideration when utilising the data.
PAHMSW	001,003,005	Due to a limited amount of sample, a lower volume was used to complete the analysis. This resulted in a raised detection limit for these samples.

LIMS-F002 - Report Notes

Project Name: 19-135
Project No: 20071478

Date Issued: 11/08/2020

Deviating Sample Re	<u>port</u>					ve				
Sample Reference	Text ID	Reported Name	Incorrect Container	Incorrect Label	Headspace	Incorrect/No Preservative	No Sampling Date	Holding Time	Handling Time	
						I				

Analysis Method

<u>Analysis</u>	Analysis Type	Analysis Method
BTEXHSA	ORGANIC	UNFILTERED
GROHSA	ORGANIC	UNFILTERED
ICPMSW (Dissolved)	METALS	FILTERED
ICPWATVAR (Dissolved)	METALS	FILTERED
Leachate Preparation CEN 10:1	PHYS	As Received
PAHMSW	ORGANIC	FILTERED
SFAPI	INORGANIC	FILTERED
TPHFID (Aliphatic)	ORGANIC	FILTERED
TPHFID (Aromatic)	ORGANIC	FILTERED
VOCHSAW	ORGANIC	UNFILTERED

Project Name: 19-135

Project No: 20071478

Date Issued: 11/08/2020

Additional Information

This report refers to samples as received, and SOCOTEC Uk Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

U = UKAS accredited analysis

M = MCERT accredited analysis

N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 105° C

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation, if applicable further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

IS = Insufficient Sample to complete analysis

NA = Sample is not amenable for the required analysis

ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-15813-1

Initial Date of Issue: 29-Jun-2020

Client Environmental Laboratory Services Ltd

Client Address: Acorn Business Campus

Mahon Industrial Park

Blackrock Cork Ireland

Contact(s): Emer Kearney

Results

Project Soil Samples

Quotation No.: Q20-19728 Date Received: 23-Jun-2020

Order No.: 7362 Date Instructed: 23-Jun-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 29-Jun-2020

Date Approved: 29-Jun-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Environmental Laboratory Services Ltd	Chemtest Job No.: 20-15813 20-15813						
Quotation No.: Q20-19728	Chemtest Sample ID.:				1020856	1020857	
Order No.: 7362	Client Sample Ref.:			182328/001	182328/002		
	Client Sample ID.:		1	2			
				Sampl	е Туре:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
рН	U	1010	10:1		N/A	8.8	8.7
Cyanide (Free)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Boron (Dissolved)	U	1450	10:1	μg/l	20	< 20	< 20
Barium (Dissolved)	U	1450	10:1	μg/l	5.0	< 5.0	7.3
Beryllium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	μg/l	0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	μg/l	1.0	1.9	< 1.0
Mercury (Dissolved)	U	1450	10:1	μg/l	0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	μg/l	1.0	2.3	1.9
Lead (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C35-C44	N	1680	10:1	μg/l	50.00	[A] < 50	[A] < 50
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10	[A] < 10	[A] < 10
Benzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Toluene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0

Results - Leachate

Project. Soil Samples							
Client: Environmental Laboratory Services Ltd		Chemtest Job No.:			20-15813	20-15813	
Quotation No.: Q20-19728		(Chemte	st Sam	ple ID.:	1020856	1020857
Order No.: 7362			Clie	nt Samp	le Ref.:	182328/001	182328/002
			Cli	ent Sam		1	2
				Sampl	e Type:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
Naphthalene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluorene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Phenanthrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Chrysene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	μg/l	2.0	< 2.0	< 2.0

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1020856	182328/001	1			А	Amber Glass 250ml
1020856	182328/001	1			А	Plastic Tub 500g
1020857	182328/002	2			А	Amber Glass 250ml
1020857	182328/002	2			А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8–C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21–C35*, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C35*, >C35–C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix I	Pre & Post Site Condition Photographs

XC201 - Southside

Pre Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

XC201 - Southside

Pre Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

te: 2020

XC201 - Southside

Pre Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

ate: 2020

XC201 - Southside Pre Works Site Photographs

larnród Éireann

Engineer:

Jacob's

Date: 2020

XC201 - Northside Pre Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

XC201 - Northside

Pre Works Site Photographs

larnród Éireann

Engineer:

Jacob's

Date: 2020

XC201 - Northside

Pre Works Site Photographs

Client

larnród Éireann

Engineer

Jacob's

Date:

XC201 - Northside

Pre Works Site Photographs

larnród Éireann

Engineer:

Jacob's

²⁰²⁰

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

XC201
Post Works Site Photographs

larnród Éireann

Engineer:

Jacob's

ate: 2020

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

2020

XC201

Post Works Site Photographs

Client

larnród Éireann

Engineer

Jacob's

Date:

2020

XC201
Post Works Site Photographs
ient:
larnród Éireann

Engineer:

Jacob's

te: 2020

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

2020

XC201

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

ate:

2020

Cork Line Level Crossings – XC211 Ground Investigation

Primary Author: Ian Holley

Client: Irish Rail

Client's Representative: JACOBS

Report Date: 25th November 2020

Report No.: OCB19-135-2

File Location: OCB19-135-2/Reporting/XC211

CONTENTS

DOCUMENT CONTROL SHEET	D	ocument	Control	Sheet
------------------------	---	---------	---------	-------

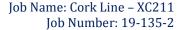
Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY1
2	SCOF	PE1
3	DESC	CRIPTION OF SITE
4	SITE	OPERATIONS
	4.1	
	4.2	Standpipe Installations3
	4.3	Trial Pits3
	4.4	Indirect CBR Tests3
	4.5	Water Purging4
	4.6	Surveying4
5	LAB	DRATORY WORK5
	5.1	Geotechnical Laboratory Testing of Soils5
	5.2	Environmental Laboratory Testing of Soils5
6	GRO	JND CONDITIONS6
	6.1	General Geology of the Area6
	6.2	Ground Types Encountered During Investigation of the Site6
	6.3	Groundwater6
7	DISC	USSION7
	7.1	Proposed Construction
Ω	DEEL	DENCES 8

APPENDICES

Appendix A	Site and Exploratory Hole Location Plans

Appendix B	Borehole Logs
Appendix C	Trial Pit Logs


Appendix D	Trial Pit Photographs
------------	------------------------------

Appendix F Water Purging Data & Logs

Appendix G Geotechnical Laboratory Test Results

Appendix H Environmental Laboratory Test Results

Appendix I Pre & Post Site Condition Photographs

Document Control Sheet

Report No.: OCB19-135-2

Project title: Cork Line Level Crossings – XC211

Client: Irish Rail

Client's Representative: JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft	Ian Holley	Glen Byrne	Michael O'Connell	1st October 2020
002	Final Factual	Ian Holley	Glen Byrne	Michael O'Connell	25 th November 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design - Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

Abbreviations use	d on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample
P	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
D	Small disturbed sample
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (C)	Standard penetration test using 60-degree solid cone
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
	The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations rela	nting to rock core – reference Clause 44.4.4 of BS 5930: 1999
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.

Cork Line Level Crossings - XC211

1 AUTHORITY

On the instructions of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings

This report details the work carried out both on site at XC211 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included boreholes, trial pits, indirect CBR testing, installation of standpipes, water purging, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC211 is located in the Farran townland, 4.9km southeast of Charleville, Co. Cork. An unnamed road crosses the Dublin-Cork railway line approximately 200m east of the N20. The level crossing is currently manned with a house and cabin located adjacent to the east of the railway line. The site is surrounded by agricultural land with a number of residential homes and farms in the area.

The site is relatively flat throughout. The main works areas are within agricultural fields, some may be marshy depending on weather conditions.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 20th February 2020 and 6th August 2020, included:

- Two (2) Cable Percussion Boreholes
- A Standpipe Installation in one (1) Borehole
- Three (3) Trial Pits
- Indirect CBR tests at six (6) locations
- Water Purging in one (1) location1

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Cable Percussion Boreholes

Two boreholes (CP01 & CP02) were put down to completion in minimum 200mm diameter using a Pilcon cable percussion soil boring rig. All boreholes were terminated either at their scheduled completion depths, on instruction from a Jacobs engineer or else on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in borehole CP02.

Details of the installations, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole logs.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on four occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Trial Pits

Three trial pits (TP01–TP03) were excavated using a 15t tracked excavator fitted with a 600mm wide bucket, to depths between 3.40m and 4.50m. The trial pits were all terminated upon encountering obstructions or upon the pit walls collapsing.

Environmental samples were taken at depths of 0.05m, 0.50m, 1.0m and 3.0m in each trial pit.

Disturbed (small tub and bulk bag) samples were taken at standard depth intervals and at change of strata.

Hand Vane testing was completed successfully where appropriate and where specified by Jacobs.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arising provided in Appendix D.

4.4 Indirect CBR Tests

An indirect CBR test was conducted at six locations (TRL01 – TRL06) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix E in the form of plots of the variation with depth of the cumulative blow count. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, as proposed by DTP Interim Advice Note 73/06 (Design Guidance for Road Pavement Foundations):

Log CBR = 2.48-1.057 Log (mm/blow)

The occasionally elevated CBR values could be a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.5 Water Purging

Prior to sampling from the standpipe (in CP02) water purging was carried out.

Appendix F presents the water purging data logs.

4.6 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in Appendix I.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compaction:** dry density/moisture content relationship.
- **soil chemistry:** pH, Sulphur content, Organic Matter content and water-soluble and total sulphate content.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix G.

5.2 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix H.

6 GROUND CONDITIONS

6.1 General Geology of the Area

Teagasc soil mapping indicates that the site area is underlain by Glaciofluvial Sands and Gravels, but Glacial Till derived chiefly from Devonian sandstones also occurs in the surrounding area.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Lower Carboniferous-age strata of the Ballysteen Formation, which consists of dark grey irregularly bedded and nodular bedded argillaceous (muddy) bioclastic limestones (wackestones and packstones) interbedded with fossiliferous calcareous shales.

The Lower Carboniferous strata were subjected to compressional deformation (tectonic shortening) during the Variscan Orogeny in Late Carboniferous and Early Permian times, resulting in the formation of an east-northeast west-southwest trending fold-thrust belt. The site is located on the northwest side of the Ballyhoura Mountains between a west-southwest to east-northeast orientated anticline (upfold) axis to the south and a similarly orientated major thrust fault zone to the north. Bedrock in the site vicinity likely dips at variable angles to the north and south, having undergone asymmetric buckle folding and contractional thrust faulting.

According to GSI groundwater database, the Ballysteen Formation is a locally important bedrock aquifer, which is moderately productive only in local zones. The site vicinity has a high groundwater vulnerability index. Karst features such as enlarged fissures, cavities and depressions occur locally in areas of northern County Cork underlain by the Ballysteen Formation.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 200mm to 250mm thickness.
- Glacial Till: Sandy gravelly silty clay, frequently low cobble content, typically soft to firm in upper horizons, becoming stiff with increasing depth.
- Bedrock: No evidence of bedrock encountered to a maximum depth of 12.00m bgl in CP02.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater monitoring to date in standpipe installations, yielded the following results:

Data	Depth to standing water level (m)
Date	CP02
13/08/20	4.15
17/08/20	3.84
21/08/20	0.01
29/09/20	2.19

Continued monitoring of the installed standpipe will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

8 REFERENCES

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. Eurocode 7 - Geotechnical design - Part 1 General Rules. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. Code of practice for ground investigations. British Standards Institution, London.

BS EN ISO 14688-1: 2002. *Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description.* British Standards Institution, London.

BS EN ISO 14689-1: 2003. *Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description*. British Standards Institution, London.

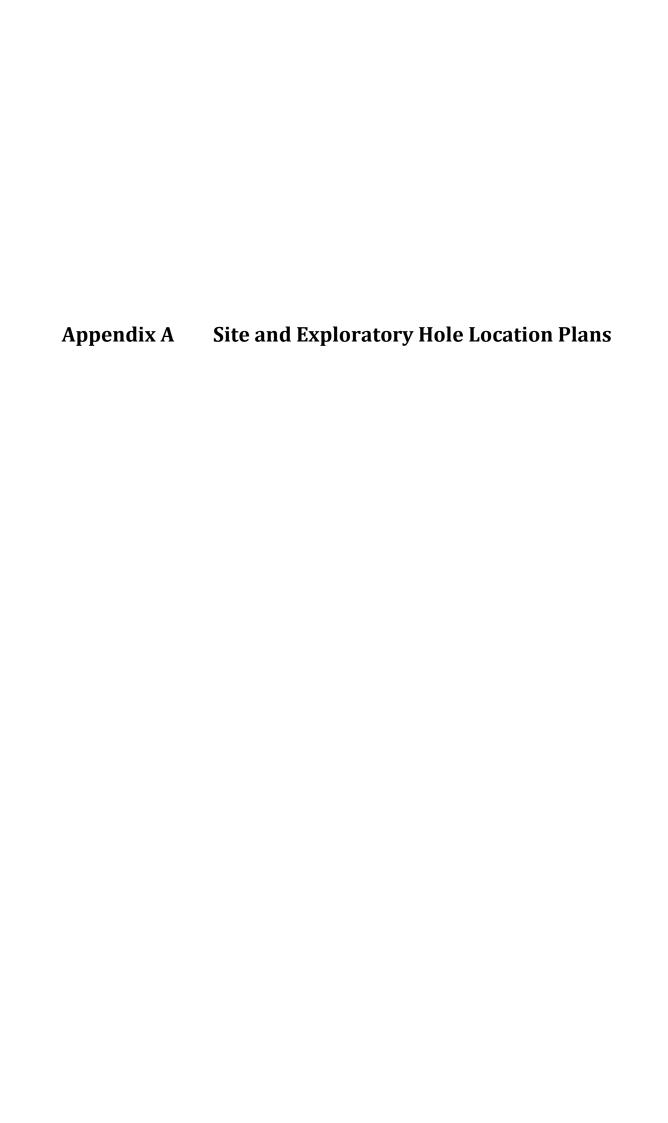
Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

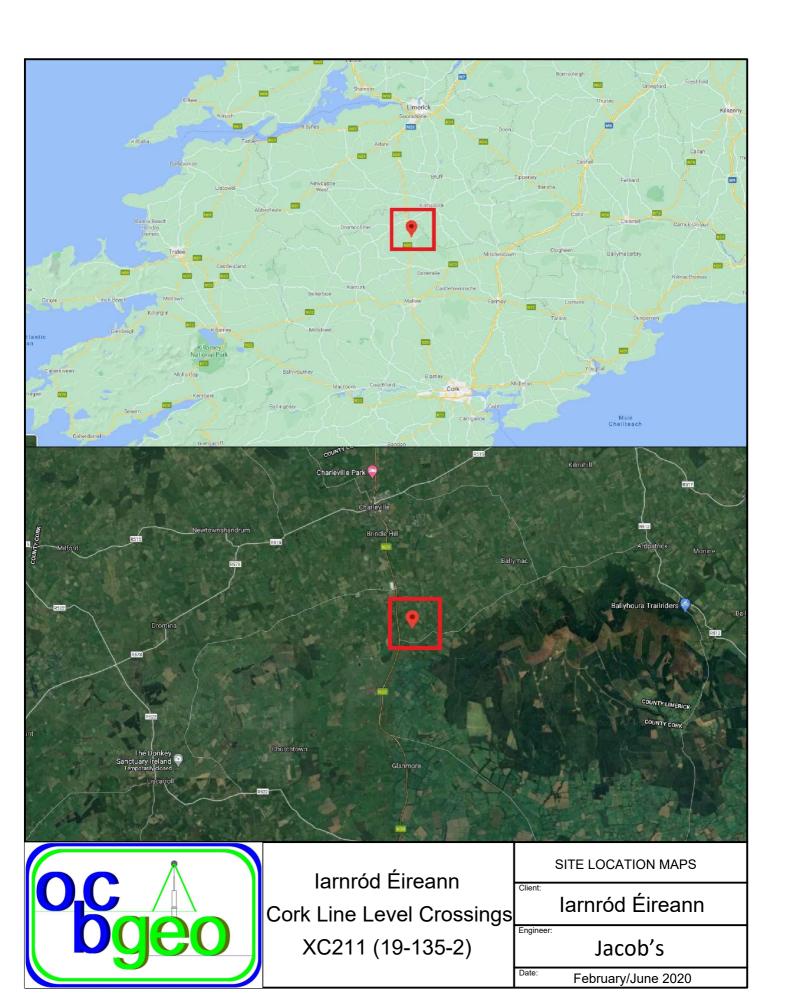
Building Research Establishment, 2007. BRE Digest 365: Soakaways.

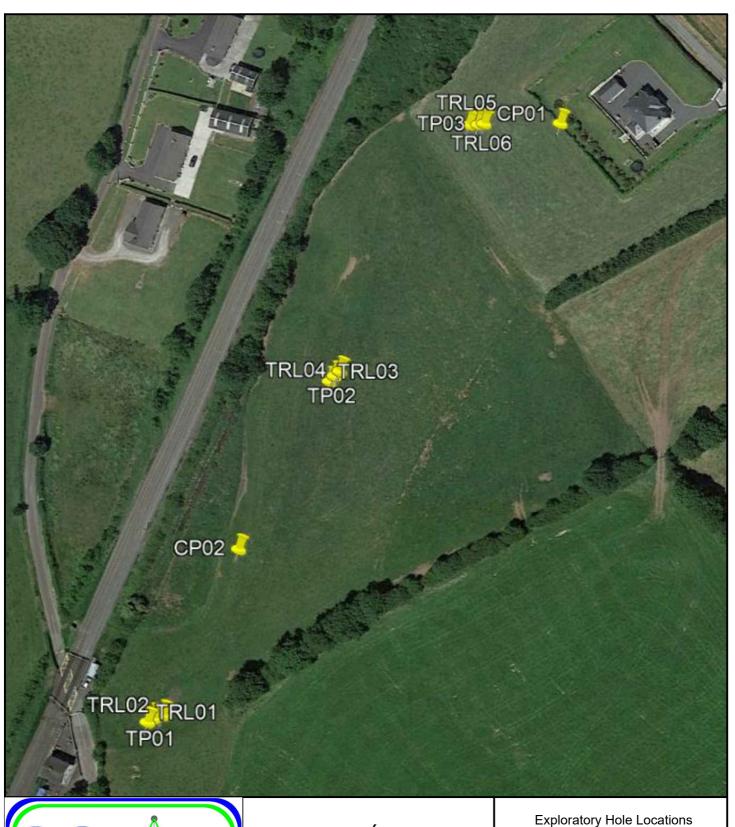
BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017.

http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/


Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015


https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA Waste Classification 2015 Web. pdf


Environment Agency UK (2009). Soil Guideline Values (SGVs).

https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/

Client: larnród Éireann

Engineer Jacob's

February/June 2020

		*			Project		Project		BO	rehol	e N	0
C					19-135		Cork Li	ne Level Crossings	X	C211	-CP	0:
	DO	90			Coordi	nates:	Client:		S	heet	1 o	f į
	J			<u>/</u> /	554970	0.41 E		d Éireann / Irish Rail				
Method:	ion				61818	4.23 N		s Representative:	Sca	ale:	1:5	0
Cable Percuss	ion						JACOBS	S	Dri	iller:	IOI)
Plant: Pilcon					Ground Level: 112.14 mOD		Dates:	18/06/2020 - 22/06/2020	Logger: IH			
Depth	Sample /	Casing	Water	Field Beauty	Level	Depth (m)			_	Backi	_	_
(m)	Tests ES1	Depth (m)	Depth (m)	Field Records	(mOD)	(Thickness)	Legend	Description TOPSOIL	Water	Васкі	772	
0.30 - 0.70	B2				111.8	(0.30)		TOPSOIL				
).30 - 0.70).30 - 0.70	D3				4	(0.40)	XXXX	Brown slightly gravelly slightly sandy clayey SILT with many rootlets. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse.				0.5
).50).70 - 1.90	ES4 B5				111.4	- 0.70	×	Soft brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse.	-			
0.70 - 1.90	D6				4	-	×—.—	Gravel is fine to coarse, subangular to subrounded.				1.0
1.20 - 1.65	SPT (C)			N=5 (1,1/1,1,2,1)		-	×—.—					1.0
4.50	N=5			.,,,,,,		- (1.20)	X—					
1.50	ES7					-	×—.—					1.5
1.90 - 2.50	B8				110.2	- - 1.90	×	Description of the second reliable property of the law soluble content Condition				
1.90 - 2.50 2.00 - 2.06	D9 SPT (C)			50 (50 for 60mm/50	4	-		Brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles				2.0
2.00 - 2.00				for 0mm)		- (0.60) -		are subrounded.				
2.50 - 3.50 2.50 - 3.50	B10 D11				109.6 4	- 2.50	××.	Stiff light brown slightly silty slightly gravelly sandy CLAY with medium	1			2.!
5.50							×	cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are subrounded.				
3.00 3.00 - 3.45	ES12 SPT (C)			N-25 (2 6/5 7 9 5)		-	×					3.
J.UU - 3.43	N=25			N=25 (2,6/5,7,8,5)		(1.50)	×					
3.50 - 4.50	B13						×					3.
3.50 - 4.50	D14					-	×					
4.00 - 4.45	SPT (C)			N=8 (0,0/1,2,1,4)	108.1	4.00	× × 0	Firm light brown slightly silty slightly gravelly sandy CLAY with medium	1			4.
	N=8				4	(0.50)	× × ×	cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is				
4.50 - 5.50	B15				107.6	- - 4.50	2 00 a	fine to coarse. Cobbles are subrounded. Soft light brown slightly gravelly slightly sandy CLAY with medium cobble	-			4.
4.50 - 5.50	D16				4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	and low small boulder content. Gravel is fine to coarse, subangular to				
5.00 - 5.45	SPT (C)			N=6 (0,1/1,2,1,2)		_ (1.00)		subrounded. Sand is fine to coarse. Cobbles and boulders are subrounded.				5.
	N=6			- (-, -, -,-,+,-,		- \			_			
5.50 - 6.50	B17				106.6	- - 5.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ľ			5.
5.50 - 6.50	D18				4	- 5.50	× × ·	Firm to Stiff light brownish grey slightly silty slightly sandy very gravelly CLAY with low to medium cobble content. Sand is fine to coarse. Gravel is				
6.00 - 6.45	SPT (C)			N-14 (2 2/2 5 2 2)			× × .	fine to coarse, angular to subrounded. Cobbles are subangular to subrounded.				6
0.00 - 0.45	N=14			N=14 (2,2/3,5,3,3)		-	×	Subrounded.				6.0
						(1.70)	8-0					
6.50 - 7.20 6.50 - 7.20	B19 D20						× -					6.5
						-	×					
7.00 - 7.45	SPT (C) N=17			N=17 (3,2/4,5,4,4)	464.5	-	8-0					7.
7.20 - 8.00	B21				104.9 4	7.20 -	×	Stiff light brownish grey slightly silty gravelly sandy CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded.				
7.20 - 8.00	D22					- (0.80)	X	course. Stavet is time to course, angular to subjournate.				7.
							X—					
8.00 - 9.00 8.00 - 9.00	B23 D24				104.1 4	8.00	Ž-	Stiff dark grey slightly gravelly slightly sandy CLAY. Sand is fine to coarse.	1			8.
8.00 - 9.00 8.00 - 8.45	SPT (C)			N=22 (4,4/6,5,6,5)	*			Gravel is fine to coarse, angular to subrounded. Cobbles are subangular to subrounded.				
8.50 - 9.50	N=22 U25											8.
						-						
9.00 - 10.00	B26					(2.00)						9.0
9.00 - 10.00 9.00 - 9.45	D27 SPT (C)			N=20 (5,5/6,5,4,5)								
	N=20			. , -, -, -, -, -, -,		-						9.!
						10.00		Continued on New Pro-				_
Remarks								Continued on Next Page Water Added Water S				_
CITIOI NO								From (m) To (m) Struck at (m) Casing 5.60 7.20 5.60	to (m)	Time (min		e to
												_
								To (m) Diam (mm) From (m)	To (n		me (h	
								10.00 200 1.90	2.20	. [00:	30

		8		<u> </u>	Project	No.:	Project	Name:	Во	rehole	No.:
O		\bigwedge			19-135		Cork Liı	ne Level Crossings	X	C211-C	P01
	DO	e (Coordi		Client:	,	S	heet 2 (of 2
	0			<i>)</i>	55497			Éireann / Irish Rail			
Method: Cable Percussion	on				61818	4 22 NI	JACOBS			l e: 1:	
Plant:					Ground		Dates:	,	Dri	ller: IC	D
Pilcon					II .	4 mOD		18/06/2020 - 22/06/2020	Log	ger: IH	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Backfill	
10.00 - 10.45	SPT (C) N=23			N=23 (7,6/5,6,6,6)	102.1	-		End of borehole at 10.000m			
	N-23				4	-					_
											10.5 —
						-					11.0
						-					_
											11.5 —
						-					-
						_					12.0
						-					12.5 —
]
						-					13.0
						-					-
						-					13.5 —
						-					14.0 —
]
						-					14.5 —
						-					_
						-					15.0 —
						-					- 15.5 —
						-					-
						_					16.0
						- -					16.5 —
]
						-					17.0
						-					-
											17.5
						<u> </u>					18.0 —
						-					=
											18.5 —
						-					_
						-					19.0 —
						-					_ _ 19.5 —
						_					=
						-					
Remarks	<u> </u>				<u> </u>					- General	4:/
								From (m) To (m) Struck at (m) Casing to 5.60 7.20 5.60	to (m)	Time (min) RO	se to (m) 5.30
								Casing Details Chise	lling	Details	_
									To (m) Time (hh:mm) 0:30

	•		Project	: No.:	Project	t Name:	Во	rehol	e No	o.:
C		1	19-135		Cork Li	ne Level Crossings	X	C211	-CPC	12
	baec		Coordi	nates:	Client:		,	heet	1 nf	2
	-900		554848	8.35 E	larnród	d Éireann / Irish Rail		iicct	1 01	
Method:			618025	5 20 N		s Representative:	Sca	le:	1:50)
Cable Percuss	ion				JACOB:	5	Dri	ller:	AA	
Plant: Pilcon				d Level: 3 mOD	Dates:	12/06/2020 17/06/2020	Los	ger:	IH	
Depth	Sample / Casing	Nater	98.28	Depth (m)		12/06/2020 - 17/06/2020	_			
(m) 0.05	Depth L	Pepth (m) Field Records	(mOD)	(Thickness)	Legend	Description TOPSOIL	Water	Back	HII	_
0.30 - 1.20 0.30 - 1.20 0.50	B2 D3 ES4		97.98	(0.30) - 0.30 - - - - - - - (0.90)	\$ \$ \$ 0 \$ \$ \$ 0 \$ \$ \$ 0 \$ \$ \$ 0	Reddish brown slightly gravelly slightly sandy CLAY with medium cobble content and occasional rootlets. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are subrounded.			0.	.5 —
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B5 D6 SPT (C)	N=15 (2,2/5,3,4,3)	97.08	1.20		Firm reddish brown slightly sandy slightly gravelly CLAY with medium cobble content and low small boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are			1.	
1.50 2.00 - 3.00 2.00 - 3.00	N=15 ES7 B8 D9		96.28	- (0.80) - - - - 2.00		subangular to subrounded. Firm light brown slightly sandy slightly gravelly CLAY with low cobble			2.	.0 —
2.00 - 2.45	SPT (C) N=8	N=8 (1,2/1,3,2,2)		- - - - - - (2.00)		content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are subrounded.			2.	.5 -
3.00 - 4.00 3.00 - 4.00 3.00 - 3.45	B11 D12 SPT (C) N=14	N=14 (2,4/4,3,4,3)								.5 —
4.00 - 5.00 4.00 - 5.00 4.00 - 4.45	B13 D14 SPT (C) N=17	N=17 (4,5/4,4,4,5)	94.28	4.00		Stiff brown slightly silty slightly gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are subangular to subrounded.				.0 —
5.00 - 6.00 5.00 - 6.00 5.00 - 5.45	B15 D16 SPT (C) N=30	N=30 (5,7/7,9,7,7)	93.28	- - 5.00 - - - -		Very Stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded.			5.	0 — - - - 5 —
6.00 - 7.00 6.00 - 7.00 6.00 - 6.45	B17 D18 SPT (C) N=32	N=32 (7,7/8,9,8,7)		- - (2.00)					6.	.0 -
7.00 - 8.00 7.00 - 8.00 7.00 - 7.45 7.50	B20 D21 SPT (C) N=11 U19	N=11 (3,3/2,3,3,3)	91.28	- - - - - - - -		Firm to Stiff light brown slightly silty sandy gravelly to very gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are subangular to subrounded.			7.	-
8.00 - 9.00 8.00 - 9.00 8.00 - 8.45	B22 D23 SPT (C) N=16	N=16 (3,4/3,5,4,4)		- - (2.00) - - - -	0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×				8.	.0 —
9.00 - 10.00 9.00 - 10.00 9.00 - 9.45	B24 D25 SPT (C) N=9	N=9 (2,3/2,2,2,3)	89.28	9.00	× × × × × × × × × × × × × × × × × × ×	Firm light brown slightly silty slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded.			9.	-
				-	× ×					-
10.00 - 11.00	B26		88.28	10.00		Continued on Next Page	\pm			_
Remarks		•				Water Added Water			_	to Ir
						From (m) To (m) Struck at (m) Casin	g to (m)	rime (min) Kose 1	o (m
							11:			_
						To (m) Diam (mm) From (m)	elling To (m	Details) Ti	me (hh:	mn
						12.00 200	, .			
										_

		8		<u> </u>	Project	: No.:	Project	: Name:	Bore	hole N	lo.:
O _I C A				Cork Li	XC211-CF						
	DO	e (Coordi		Client:		She	eet 2 d	of 2
	<u> </u>			<i>)</i>	55484	0.00 -		l Éireann / Irish Rail			
Method: Cable Percussion	on				61802	E 20 N	JACOBS	s Representative:	Scale	e: 1:5	50
Plant:					Ground		Dates:		Drill	er: AA	١
Pilcon						3 mOD		12/06/2020 - 17/06/2020	Logg	er: IH	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water	ackfill	
10.00 - 11.00 10.00 - 10.45	D27	,,	(,	N. 42 (2.2/4.2.2.2)	(11100)	-		Firm light brown slightly gravelly slightly sandy CLAY with many fibrous rootlets and an organic odour. Sand is fine to coarse. Gravel is fine to			
	SPT (C) N=13			N=13 (3,2/4,3,3,3)		-		coarse, angular to subrounded.			=
10.50	U30					- (1.00)					10.5 —
44.00.42.00	D20				07.20	-					=
11.00 - 12.00 11.00 - 12.00	B28 D29				87.28	- 11.00 -	× ×	Stiff brown slightly slity slightly sandy very gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular.			11.0 —
11.00 - 11.45	SPT (C) N=18			N=18 (4,6/4,4,5,5)		- (1.00)	× ×				11.5
11.50	U31					- (1.00)	× ×				=
12.00 - 12.45	SPT (C)			N=19 (5,6/7,4,4,4)	86.28	12.00	<u></u>				12.0 -
	N=19			(-,-, -, -, -, -,		-		End of borehole at 12.000m			=
						- -					12.5 —
						-					=
						-					13.0 —
						- -					=
						-					13.5
						-					=
						- - -					14.0
						-					=
						-					14.5
						- - -					=
						-					15.0 —
						-					3
						- -					15.5 —
						- -					=
						-					16.0 —
						- -					- =
						-					16.5 — — —
						-					17.0 —
						-					4
						-					17.5
						-					\pm
						-					18.0 —
						-					=
						-					18.5
						-					=
						- -					19.0
						-					‡
						-					19.5
						- - -					=
Remarks								Water Added Water S From (m) To (m) Struck at (m) Casin;	Strike - C		e to (m)
								Casing Details Chis To (m) Diam (mm) From (m)	elling De To (m)	tails Time (F	nh:mm)
								12.00 200	. ,		

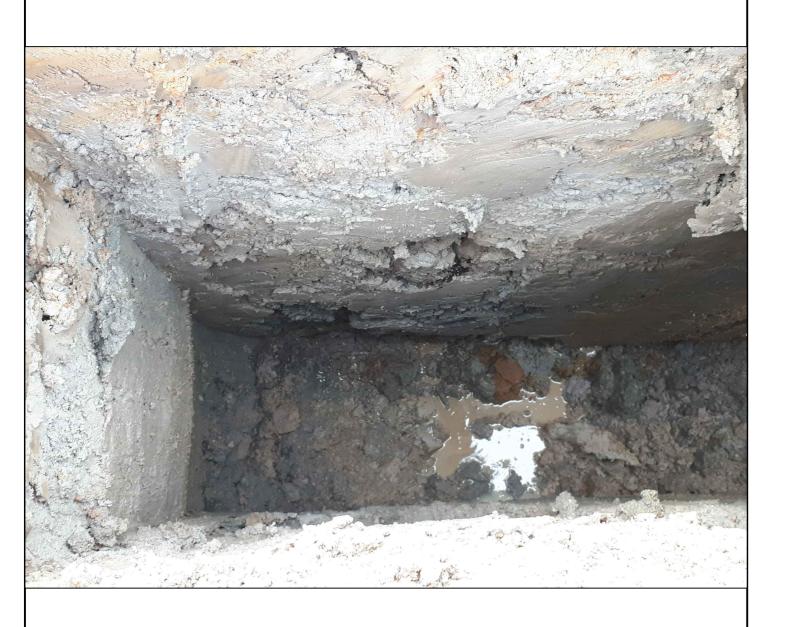
Appendix C

Trial Pit Logs

	10		Project			t Name:			No.:
			19-135			ne Level Crossings	X	C211	-TP01
	Dge	O	Co-ord		Client:	d Éireann / Irish Rail	S	heet	1 of 1
Method:		<u></u>	55481	6.90 E		s Representative:	Sca	ale:	1:20
Excavation			61796	3.85 N	JACOB:				
Plant:			Ground	d Level:	Date:		Dri	ver:	TS
Kobelco SK14	10SRu			8 mOD	20/02/	2020	Log	gger:	MN
Depth (m)	Sample / Tes	ts Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.05	ES1		(IIIOD)	- (TITICKTIESS)	XXX	TOPSOIL: Soft dark brown slightly sandy silty CLAY with a trace of gravel	-		
				- - (0.30)		and frequent rootlets, moist.			-
				-					-
			97.68	- 0.30 -	X/4X/4	Soft light brown becoming beige, slightly sandy slightly gravelly silty CLAY			-
0.40 - 0.90 0.40 - 0.90	B2 D3			-	**************************************	with low cobble content and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular			-
0.50 0.55	ES4	HVP=45, HVR=17		-	**************************************	to subangular, sandstone and siltstone. Strata becomes firm by 0.5m and is more orange in colour.			0.5
0.55		1101 -43, 11010-17		(0.70)	0 20				-
				-	× ×				-
				-	× × .				-
				<u> </u>	× × 0				-
1.00 1.00 - 1.50	ES5 B6		96.98 96.93	- (1:85)	× 3/0 × 3/0	Firm dark brown organic silty CLAY with partially decayed vegetation,]		1.0
1.00 - 1.50 1.10	D7	HVP=63, HVR=22		-	210 X	\moist. Firm light grey slightly gravelly slightly sandy, locally sandy, silty CLAY with			-
				-	216 ×	occasional dark brown partially decayed vegetation fragments, moist.			-
				-	210 × 210				-
				-	alc. <u>×</u>				-
				-	× ×				1.5 —
				-	× <u>×</u> 340				-
				(1.45)	× <u>×</u> <u>×</u>				-
				(1.43)	×				-
				-	× - 70				-
				-	X				2.0
				-	216 <u>2</u> 216 <u>2</u> 216 <u>2</u>				-
				-	× ×				-
				-	316 × ×316				-
2.50, 2.00			05.40	2.50	arc <u>×</u> ×				-
2.50 - 3.00 2.50 - 3.00	B8 D9		95.48	- 2.50 -	X———	Soft to firm grey slightly gravelly sandy silty CLAY with occasional brown mottling, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to			2.5 —
					X-X-	subangular.			_
				(0.50)	×				-
				[-
3.00	ES12		94.98	3.00	<u> </u>		ϗ		3.0
3.00 - 3.40	B10		34.38	3.00		Light grey becoming yellowish brown gravelly SAND, wet.			3.0
3.00 - 3.40	D11	Rapid inflow - No rise		(0.40)					_
				(0.40)					_
			94.58	3.40					_
			34.30	3.40		End of trial pit at 3.400m			3.5 —
				_					J.J
				_					_
				_					
				_					
Remarks						Water Strikes: Sta	bility	/ :	
						vater strikes.	-	, Ilapsi	ng
						3.00 Rapid inflow - No			
						rise	idth:		2.00
Trial Pit termir	nated at 3.40m	due to pit walls collapsin	g.			Le	ngth:	:	4.60

			Project			t Name:			No.:
•			19-135 Co-ord		Client:	ne Level Crossings	X	C211	-TP02
l	bye	U	55488			d Éireann / Irish Rail	SI	heet	1 of 1
Method:						s Representative:	Sca	le:	1:20
Excavation			61808	9.43 N	JACOB:	S	Dri	ver:	TS
Plant:				d Level:	Date:		-		
Kobelco SK14 Depth		<u> </u>	101.48 Level	B mOD Depth (m)	20/02/		—	ger:	MN
(m)	Sample / Test	s Field Records	(mOD)	(Thickness)			Water		
0.05	ES1		101.2	(0.25)		TOPSOIL: Soft dark brown slightly sandy silty CLAY with frequent rootlets, moist. One red brick fragment. Firm light brown slightly sandy silty CLAY with occasional gravel and			-
0.30 - 0.80	D3		3	- - -	× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	cobbles, occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular, sandstone and limestone.			0.5 —
0.50		HVP=47, HVR=20		(0.85)					-
1.00	ES5		100.3	- - - 1.10		Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with low cobble and boulder content, moist. Sand is fine to coarse. Gravel is			1.0
				- - - - -		fine to coarse, angular to subangular. Cobbles and boulders are angular to subangular predominantly limestone with occasional sandstone.			1.5
1.60 - 2.10 1.60 - 2.10	B6 D7			- - - - - (1.60)	**************************************				-
				- - - - - - - - - -	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				2.0
2.70 - 3.20 2.70 - 3.20	B8 D9		98.78	- - 2.70 - -	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Very stiff light brown to brown slightly sandy gravelly silty CLAY with medium cobble and boulder content, slightly moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles and boulders are angular to subangular, predominantly limestone.			-
3.00	ES10			- (0.60) - - - -	\$\frac{1}{2}\cdot \frac{1}{2}\cdot \frac				3.0
			98.18 98.18	- (9.90) - - - - - - - - - - - - - - - - - - -	<u></u>	Refusal on limestone BOULDERS. End of trial pit at 3.300m			3.5 — - - -
Remarks						vater strikes.	bility sht sp	: alling	
						None Encountered W	idth:		1.80
Trial Dit tormin	nated at 2 20m	due to Limestone Bould	ler obstruct	ions		l le	ngth:		3.50

6			Project	: No.:		t Name:			No.:
	J <mark>C</mark>	_	19-135			ne Level Crossings	Х	C211	-TP03
	Dge	O	Co-ord		Client:	d Éireann / Irish Rail	S	heet	1 of 2
Method:		<u> </u>	55493	9.53 E		s Representative:	Sca	ıle:	1:20
Excavation			61818	4.48 N	JACOB:				
Plant:			Ground	d Level:	Date:		Dri	ver:	TS
Kobelco SK1	40SRu		111.99	9 mOD	20/02/	2020	Log	gger:	MN
Depth (m)	Sample / Tests	s Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.05	ES1			(0.25)		TOPSOIL: Soft dark brown slightly sandy slightly gravelly silty CLAY wit frequent rootlets, moist.			-
0.30 - 0.80 0.30 - 0.80	B2 D3		111.7 4	- 0.25 - -	\$0.50 \$0.50 \$0.50 \$0.50	Firm light brown slightly sandy slightly gravelly silty CLAY with low cobble and boulder content and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are angular to subrounded, limestone.			-
0.50 0.50	ES4	HVP=44, HVR=21		(0.55) - -	\$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00 \$ 0.00				0.5 —
4.00			111.1 9	0.80	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Stiff light brown slightly sandy gravelly silty CLAY with low cobble and boulder content and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are			-
1.00	ES5	Trickling flow from gravel strata - No rise.	110.8 9	- - 1.10 - - (0.20)		angular to subrounded, limestone. Light brown slightly clayey slightly silty very sandy GRAVEL with low cobble content, wet.	•		1.0
1.30 - 1.80 1.30 - 1.80	B6 D7		110.6 9	1.30	× ************************************	Stiff becoming very stiff light brown slightly sandy gravelly silty CLAY with low to medium cobble content, moist. Sand is fine to coarse. Gravel is fine			-
				- - - -	\$\frac{1}{2}\frac{1}{2	to coarse, angular to subrounded. Cobbles and boulders are subangular to subrounded, limestone.			1.5
				- - -	\$0~8 -0.50 \$0~8 -0.50 -0.50 8				-
				-	\$\frac{\sigma}{\sigma}\s				2.0
				-	\$\frac{\pi}{\sigma}\frac{\pi}{				-
2.50 - 3.00 2.50 - 3.00	B8 D9			- - (3.20)	\$\frac{1}{2}\cdot \frac{1}{2}\cdot \frac				2.5 —
				- - -	* 0.0 *				-
3.00	ES10			- - - -	\$ 0.00 \$				3.0 —
				- - -					- -
				- - -	\$\disp\cent{2} \disp\cent{2} \din \disp\cent{2} \disp\cent{2} \disp\cent{2} \disp\cent				3.5 —
3.70 - 4.20 3.70 - 4.20	B11 D12			- - - -					-
Remarks					1.0.0.TV	Continued on Next Page	hilit	,.	
nemarks						Water Strikes.	bility es sp	/: alling	
						1.10 Trickling flow from gravel strata - No rise.	idth:		4.40
Trial Pit termii	nated at 4.50m (due to pit walls spalling in	wards.				ngth:	1	2.00


			Project			Name:				al Pit No.:
O			19-135			ne Level Crossings			×	C211-TP03
	bged)	Co-ord	inates:	Client:			<u></u>	S	heet 2 of 2
			55493		I	Éireann / Irish Rail				
Method: Excavation			61818	4.48 N	I	Representative:			Sca	ale: 1:20
					JACOBS)			Dr	iver: TS
Plant: Kobelco SK140)SRu		111.99		Date: 20/02/2	2020			Lo	gger: MN
Depth	Sample / Tests	Field Records	Level	Depth (m)	1		Description		Water	
(m)	Jampie / Tests	rieia kecoras	(mOD)	(Thickness)	Legend		pescription		Wa	
				-	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$					_
				-	\$05.8°					_
				-	0.00 0.00 0.00 0.00					_
				- -	÷0×6 €0×6					_
			107.4	4.50	0 × × 8	End o	f trial pit at 4.500m			4.5
			9	- -		Endo	t that pit at 4.000m			_
				- -						_
				-						_
				-						
				-						5.0
				-						_
				<u>-</u>						
				-						_
				-						_
				-						5.5
				-						_
				-						_
				-						_
				-						_
				-						6.0
				- -						_
				-						_
				-						_
				-						_
				- -						6.5 —
				-						_
				-						-
				-						-
				-						-
										7.0
				_						-
				_						-
				_						-
				_						-
				-						7.5 —
				-						-
				 - -						-
				-						-
				-						-
D '									C4 1 :::	
Remarks								Strikes:	Stability Sides sp	
							Struck at (m): 1.10	Remarks: Trickling flow from	2 0	
							1.10	gravel strata - No	Width	4.40
Trial Pit termina	ted at 4.50m dı	ue to pit walls spalling inv	vards.					rise.	Length	2.00

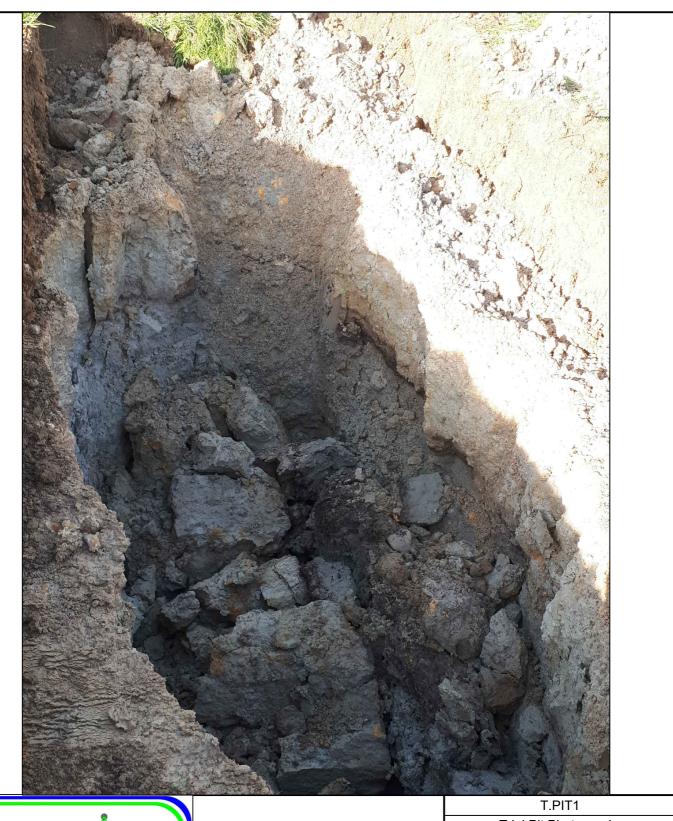
Appendix D Trial Pit Photographs

	T.PIT1									
6	Trial Pit Photographs									
	larnród Éireann									
	Iacob's									

		T.PIT1								
		Trial Pit Photographs								
S	Client:	larnród Éireann								
	Engineer:	Jacob's								

		I.PIIT
6	Trial Pi	t Photographs
	larnró	d Éireann
	Engineer:	ıcob's

		I.PH1
		Trial Pit Photographs
3	Client:	larnród Éireann
	Engineer:	looob's
		Jacob's



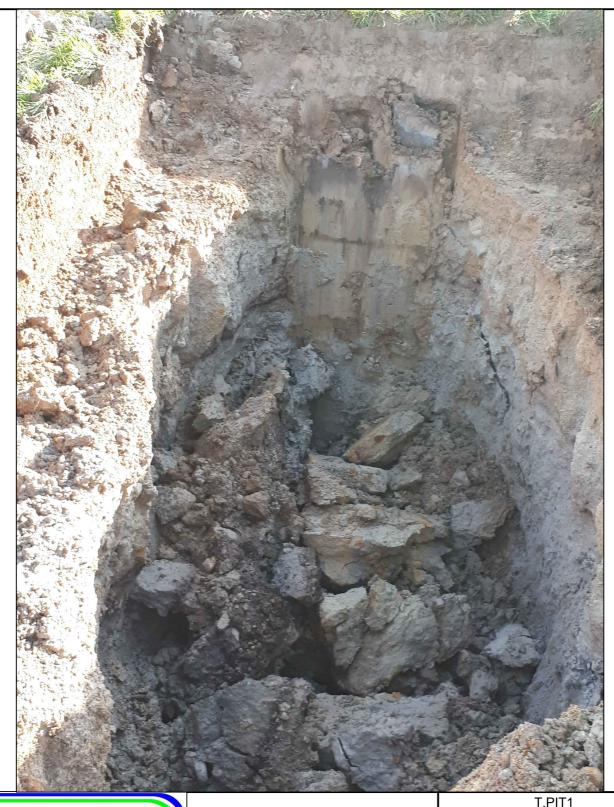
	T.PIT1
	Trial Pit Photographs
Client:	Iarnród Éireann
Engineer:	Jacob's

		1.P111
		Trial Pit Photographs
3	Client:	Iarnród Éireann
	Engineer:	Jacob's

T.PIT1
Trial Pit Photographs
Client:
larnród Éireann

Engineer:

Jacob's



	T.PIT1
	Trial Pit Photographs
6	larnród Éireann
	Jacob's

		T.PIT1
		Trial Pit Photographs
S	Client:	larnród Éireann
	Engineer:	Jacob's

T.PIT1
Trial Pit Photographs
Client:
larnród Éireann

Engineer:

Jacob's

Date: February 2020

		T.PIT1	
		Trial Pit Photographs	
"	Client:	larnród Éireann	
,	Engineer:	Jacob's	
	Date:	February 2020	

		T.PIT2
		Trial Pit Photographs
5	Client:	larnród Éireann
	Engineer:	Jacob's

	1.7112
	Trial Pit Photographs
Client:	larnród Éireann
Engineer:	

Jacob's

Pate: February 2020

		1.PH2	
		Trial Pit Photographs	
	Client:		
		larnród Éireann	
S			
	Engineer:		
		Jacob's	
	Date:	February 2020	
		<u> </u>	

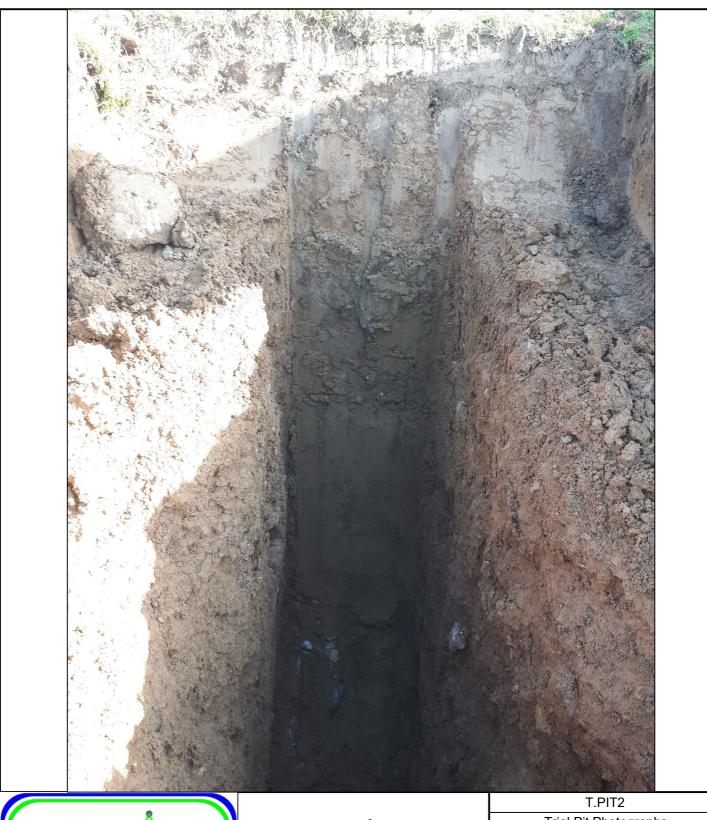
oc bgeo

larnród Éireann Cork Line Level Crossings XC211 (19-135-2) T.PIT2

Trial Pit Photographs

larnród Éireann

February 2020


Engineer:

Jacob's

	T.PIT2
6	Trial Pit Photographs
	larnród Éireann
	Jacob's

Trial Pit Photographs Client:

larnród Éireann

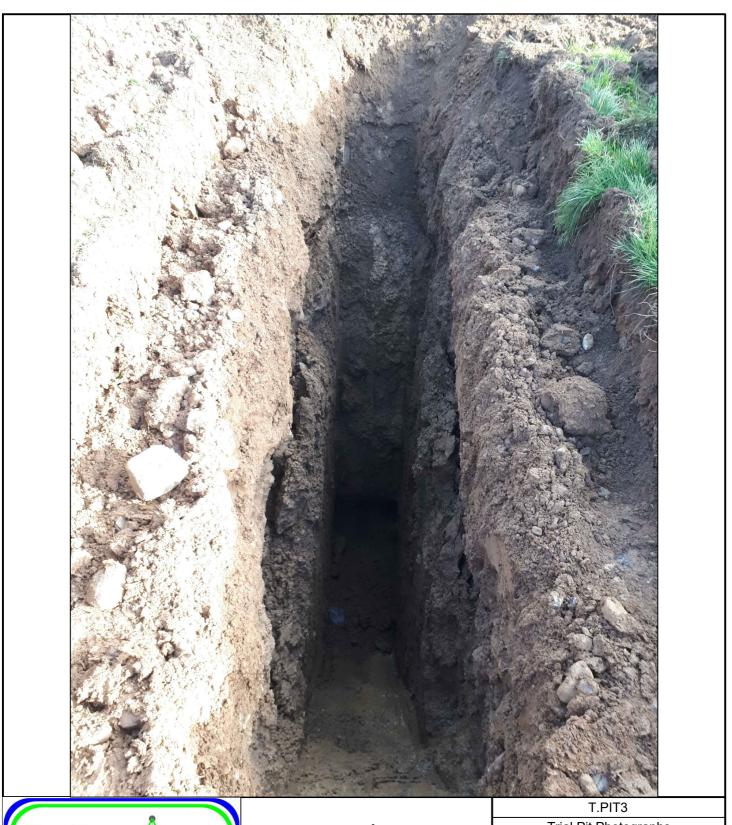
Engineer

Jacob's

	T.PIT2
	Trial Pit Photographs
S	larnród Éireann
	Jacob's

	T.PIT2
60	Trial Pit Photographs
	larnród Éireann
	Jacob's

		T.PIT3
		Trial Pit Photographs
•	Client:	larnród Éireann
	Engineer:	lo o o lo lo
		Jacob's



		1.7113
		Trial Pit Photographs
S	Client:	larnród Éireann
	Engineer:	Jacob's

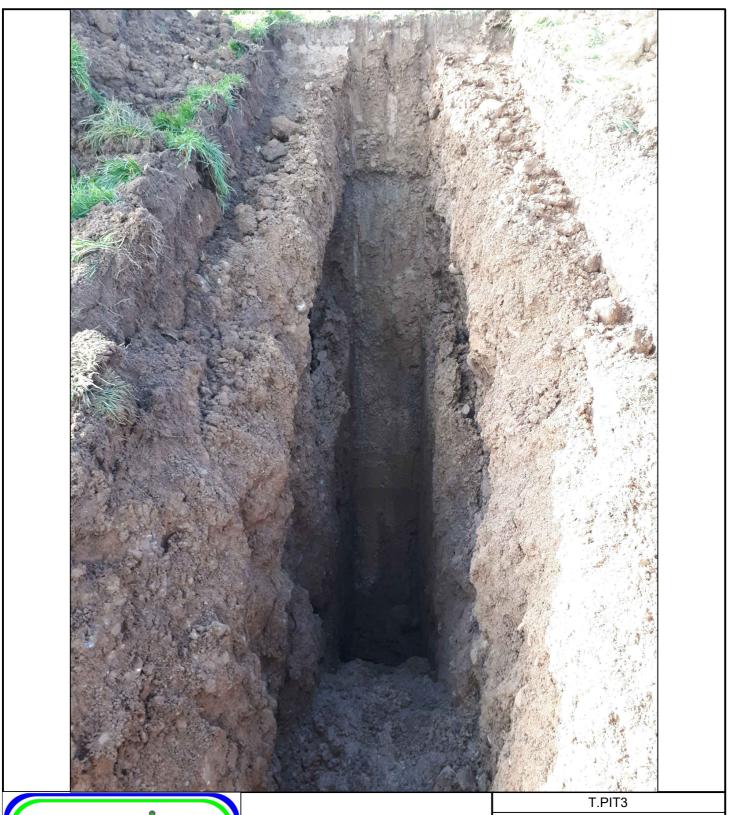
	T.PIT3			
	Trial Pit Photographs			
3	larnród Éireann			
י	Engineer: Jacob's			

T.PIT3
Trial Pit Photographs

Client:

larnród Éireann

Engineer:


Jacob's

February 2020

		1.PH3	
		Trial Pit Photographs	
3	Client:	Iarnród Éireann	
	Engineer:	Jacob's	
	Date:	February 2020	

Trial Pit Photographs

Client: larnród Éireann

Engineer:

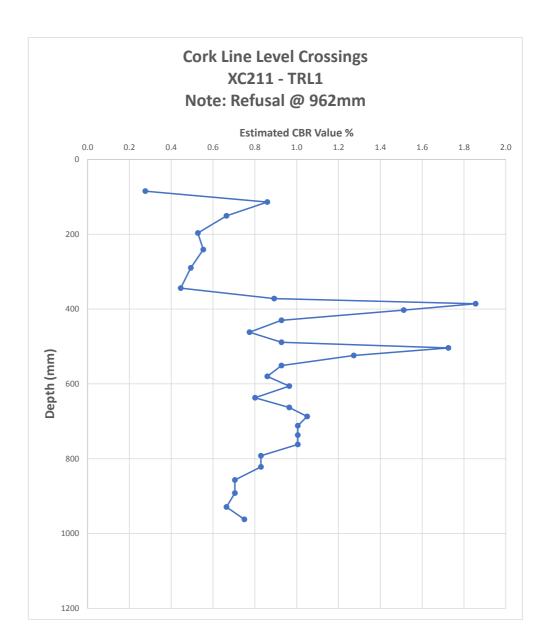
Jacob's

Pebruary 2020

	T.PIT3			
	Trial Pit Photographs			
3	larnród Éireann			
	Jacob's			

S		T.PIT3	
		Trial Pit Photographs	
	Client:	larnród Éireann	
	Engineer:	Jacob's	
	Date:	February 2020	_

Appendix E

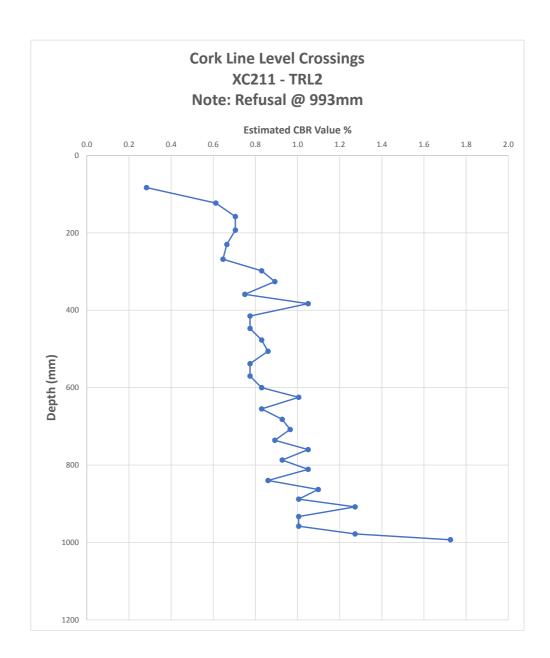

Indirect CBR Test Results

Location	XC211 - TRL1	Job No	19-135

Easting	Northing	Elevation
554814.846	617962.459	98.149

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1007	mm	09/03/2020

No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	922	85	85	0.3
2	893	29	114	0.9
3	856	37	151	0.7
4	810	46	197	0.5
5	766	44	241	0.6
6	717	49	290	0.5
7	663	54	344	0.4
8	635	28	372	0.9
9	621	14	386	1.9
10	604	17	403	1.5
11	577	27	430	0.9
12	545	32	462	0.8
13	518	27	489	0.9
14	503	15	504	1.7
15	483	20	524	1.3
16	456	27	551	0.9
17	427	29	580	0.9
18	401	26	606	1.0
19	370	31	637	0.8
20	344	26	663	1.0
21	320	24	687	1.0
22	295	25	712	1.0
23	270	25	737	1.0
24	245	25	762	1.0
25	215	30	792	0.8
26	185	30	822	0.8
27	150	35	857	0.7
28	115	35	892	0.7
29	78	37	929	0.7
30	45	33	962	0.7
31				

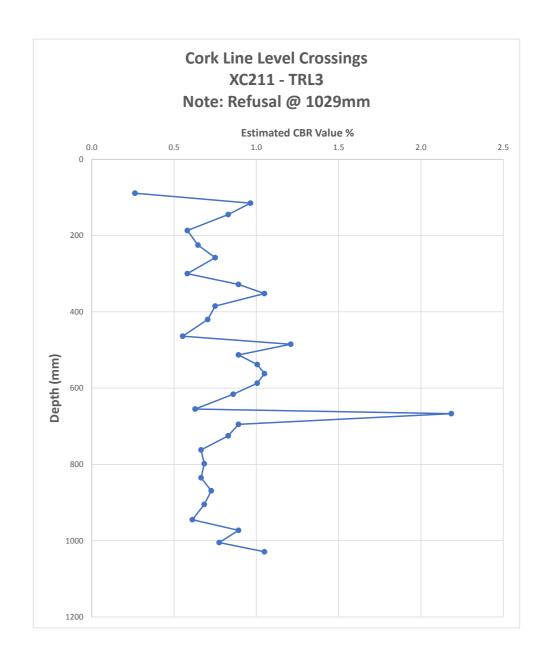


Location	XC211 - TRL2	Job No	19-135
----------	--------------	--------	--------

Easting	Northing	Elevation
554820.522	617964.969	97.873

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1053	mm	09/03/2020

No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	970	83	83	0.3
2	930	40	123	0.6
3	895	35	158	0.7
4	860	35	193	0.7
5	823	37	230	0.7
6	785	38	268	0.6
7	755	30	298	0.8
8	727	28	326	0.9
9	694	33	359	0.7
10	670	24	383	1.0
11	638	32	415	0.8
12	606	32	447	0.8
13	576	30	477	0.8
14	547	29	506	0.9
15	515	32	538	0.8
16	483	32	570	0.8
17	453	30	600	0.8
18	428	25	625	1.0
19	398	30	655	0.8
20	371	27	682	0.9
21	345	26	708	1.0
22	317	28	736	0.9
23	293	24	760	1.0
24	266	27	787	0.9
25	242	24	811	1.0
26	213	29	840	0.9
27	190	23	863	1.1
28	165	25	888	1.0
29	145	20	908	1.3
30	120	25	933	1.0
31	95	25	958	1.0
32	75	20	978	1.3
33	60	15	993	1.7
34				

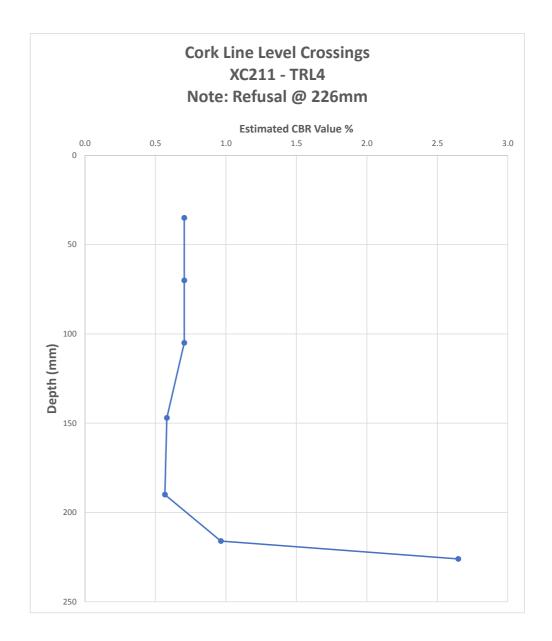


Location XC211 - TRL3	Job No	19-135
-----------------------	--------	--------

Easting	Northing	Elevation
554882.414	618087.375	101.182

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1090	mm	09/03/2020

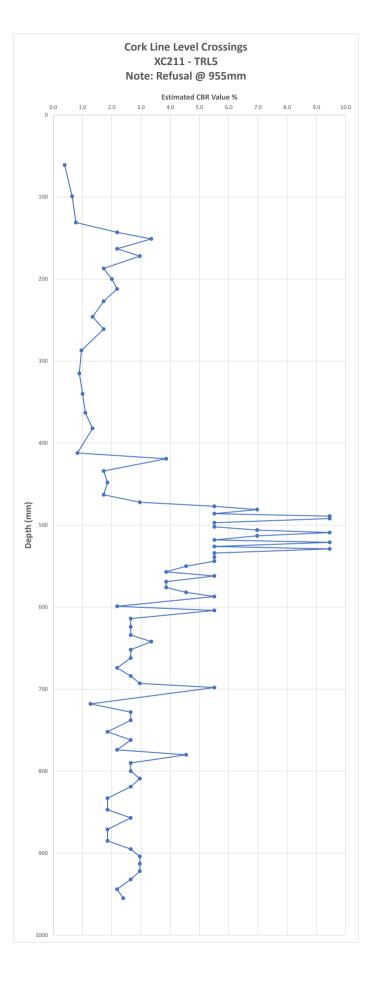
No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	1001	89	89	0.3
2	975	26	115	1.0
3	945	30	145	0.8
4	903	42	187	0.6
5	865	38	225	0.6
6	832	33	258	0.7
7	790	42	300	0.6
8	762	28	328	0.9
9	738	24	352	1.0
10	705	33	385	0.7
11	670	35	420	0.7
12	626	44	464	0.6
13	605	21	485	1.2
14	577	28	513	0.9
15	552	25	538	1.0
16	528	24	562	1.0
17	503	25	587	1.0
18	474	29	616	0.9
19	435	39	655	0.6
20	423	12	667	2.2
21	395	28	695	0.9
22	365	30	725	0.8
23	328	37	762	0.7
24	292	36	798	0.7
25	255	37	835	0.7
26	221	34	869	0.7
27	185	36	905	0.7
28	145	40	945	0.6
29	117	28	973	0.9
30	85	32	1005	0.8
31	61	24	1029	1.0
32	<u> </u>			



Location	XC211 - TRL4	Job No	19-135
----------	--------------	--------	--------

Easting	Northing	Elevation
554886.268	618091.178	101.803

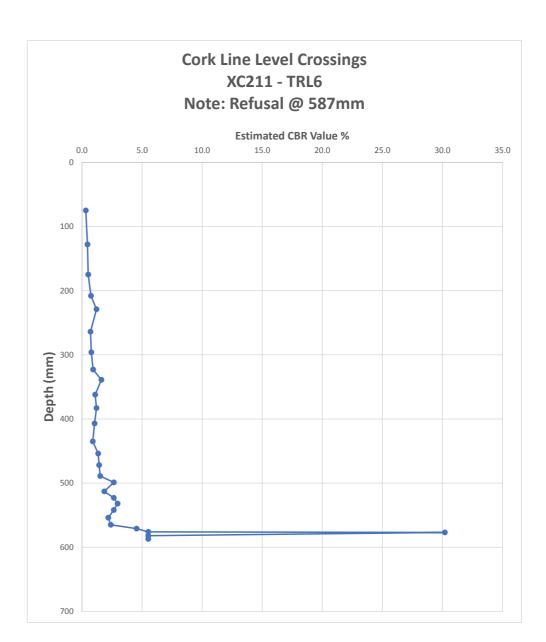
Test Start Depth	0	mm/bgl	DATE
Start Reading:	1045	mm	09/03/2020


No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)	·	%
1	1010	35	35	0.7
2	975	35	70	0.7
3	940	35	105	0.7
4	898	42	147	0.6
5	855	43	190	0.6
6	829	26	216	1.0
7	819	10	226	2.6
8	819	0	226	
9	819	0	226	
10				

Location	XC211 - TRL5	Job No	19-135
Easting	Northing	Elevation	
554936.035	618184.51	111.629	

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1042	mm	09/03/2020

Start recoung.			03/03/2020	
No. of Blows	READING	Penetration/blow	DEPTH	CBR
NO. OI BIOWS			DEPTH	
	(mm)	(mm)		%
1	981	61	61	0.4
2	943	38	99	0.6
3	911	32	131	0.8
4	899	12	143	2.2
5				
	891	8	151	3.4
6	879	12	163	2.2
7	870	9	172	3.0
8	855	15	187	1.7
9	842	13	200	2.0
10	830	12	212	2.2
11	815	15	227	1.7
12	796	19	246	1.3
13	781	15	261	1.7
14	755	26	287	1.0
15	727	28	315	0.9
16	702	25	340	1.0
17	679	23	363	1.1
18	660	19	382	1.3
19	630	30	412	0.8
20	623	7	419	3.9
21		15	434	1.7
	608			
22	594	14	448	1.9
23	579	15	463	1.7
24	570	9	472	3.0
25	565	5	477	5.5
26	561	4	481	7.0
27	556	5	486	5.5
28	553	3	489	9.5
29	550	3	492	9.5
30	545	5	497	5.5
31	540	5	502	5.5
		4		
32	536		506	7.0
33	533	3	509	9.5
34	529	4	513	7.0
35	524	5	518	5.5
36	521	3	521	9.5
37	516	5	526	5.5
38	513	3	529	9.5
39	508	5	534	5.5
40	503	5	539	5.5
41	498	5	544	5.5
42	492	6	550	4.5
43	485	7	557	3.9
44	480	5	562	5.5
45	473	7	569	3.9
46	466	7	576	3.9
47	460	6	582	4.5
48	455	5	587	5.5
49	443	12	599	2.2
50	438	5	604	5.5
51	428	10	614	2.6
52	418	10	624	2.6
53	408	10	634	2.6
54	400	8	642	3.4
55	390	10	652	2.6
56	380	10	662	2.6
57	368	12	674	2.2
58	358	10	684	2.6
59	349	9	693	3.0
60	344	5	698	5.5
61	324	20	718	1.3
62	314	10	728	2.6
63	304	10	738	2.6
64	290	14	752	1.9
65	280	10	762	2.6
66	268	12	774	2.2
67	262	6	780	4.5
68	252	10	790	2.6
69	242	10	800	2.6
70	233	9	809	3.0
71	223	10	819	2.6
72	209	14	833	1.9
73	195	14	847	1.9
74	185	10	857	2.6
75	171	14	871	1.9
76	157	14	885	1.9
77	147	10	895	2.6
78	138	9	904	3.0
79	129	9	913	3.0
80	120	9	922	3.0
81	110	10	932	2.6
			944	
82	98	12		2.2
83	87	11	955	2.4
84				



Location	XC211 - TRL6	Job No	19-135

Easting	Northing	Elevation
554941.786	618184.849	112.108

Test Start Depth	0	mm/bgl	DATE
Start Reading:	1092	mm	09/03/2020

No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	1017	75	75	0.3
2	964	53	128	0.5
3	917	47	175	0.5
4	884	33	208	0.7
5	863	21	229	1.2
6	828	35	264	0.7
7	796	32	296	0.8
8	769	27	323	0.9
9	753	16	339	1.6
10	730	23	362	1.1
11	709	21	383	1.2
12	685	24	407	1.0
13	657	28	435	0.9
14	638	19	454	1.3
15	620	18	472	1.4
16	603	17	489	1.5
17	593	10	499	2.6
18	579	14	513	1.9
19	569	10	523	2.6
20	560	9	532	3.0
21	550	10	542	2.6
22	538	12	554	2.2
23	527	11	565	2.4
24	521	6	571	4.5
25	516	5	576	5.5
26	515	1	577	30.2
27	510	5	582	5.5
28	505	5	587	5.5
29	505	0	587	
30	505	0	587	
31				

Appendix F

Water Purging Data & Logs

Job Name: Job Nr:	I.E - Cork Line 19-135			h (m) r (m) r2 TWV (m3)	3 0.0505 0.00255025 0.024035596
BH ID:	XC211-CP02		Theoretical Well Volume	24.04 /	trs
Depth to Response Zone:	Top (mbgl)	Bottom (mbgl)	TWV x3	72.11 <i>l</i>	trs
	2	5			
Purge Start Time:	13:45			(mbgl)	
Purge Finish Time:	14:40		Depth to Water	4.36	
			Total Depth	5.4	
Depth to water after purging:	4.75	mbgl			
	Time Taken to fill 25ltr container(mins)	Flow Rate I/min		Date _	06/08/2020
Reading 1:			(NO RECHARGE - POSSIBLE PERCHED WA	TER)	
Reading 2:					
Reading 3:					
Nr of Containers filled:		<1]		
Total Volume Purged:		14	litres		
	Temperature	₽H	Electrical Conductivity	Dissolved Oxygen	Redox Potential
Reading 1	16.23	6.57	78.01	0.52	25

Appendix G	Geotechnical Soil Laboratory Test Results

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93346
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Tested:	31/03/2020
Order No:	2003-104	Date Reported:	03/04/2020
Originator:	lan Holley	Specification:	Client

Sampled Ref: XC211-TP01 Type D Sample 3

Sample Type: Bulk Location: XC211-TP01 Type D Sample 3

Date Sampled: Client Info Sample by: Client

Depth: 0.4-0.9m **Material Type:** Soil

Moisture Content (%): 11

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 01925 286 880

LABORATORY TEST REPORT

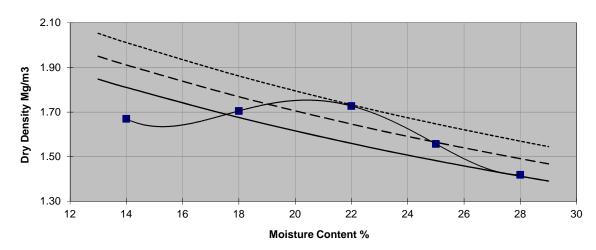
DRY DENSITY / MOISTURE CONTENT RELATIONSHIP - BS 1377: Part 4: 1990

Project: Cork Line Level Crossings Job No: 19-135 **Client: OCB Geotechnical** Lab Ref No.: ST 93345 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 06/04/2020 Co Cork **Date Reported:** 07/04/2020

Order No: 2003-104 Material: Soil Originator: Ian Holley Specification: Client

Client Sample Ref: XC211-TP01 Type B Sample 2 Bulk Sample Type: Supplier: Description: Soil Client Info

Location: 0.4-0.9m


Date sampled: Client Info Comments: None

Sampling Cert: No

Rammer used :	4.5	No of layers:	3
No of sub samples:	5	% retained on 37.5mm sieve	0.6
Mould Size:	CBR	% retained on 20mm sieve	4.4

Bulk Density: Mg/m³	1.90	2.01	2.11	1.95	1.82
Moisture Content: %	14	18	22	25	28
Dry Density: Mg/m³	1.67	1.71	1.73	1.56	1.42

---- 0% Air Voids — — - 5% Air Voids — 10% AIr Voids —

Maximum Dry Density (Mg/m³) **Optimum Moisture Content (%)** 1.75 20

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with BS 1377: Part 4:1990 Particle Density (Mg/m³) - 2.8 (Assumed)

James Fisher Testing Services Limited

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

Tel: 01925286880

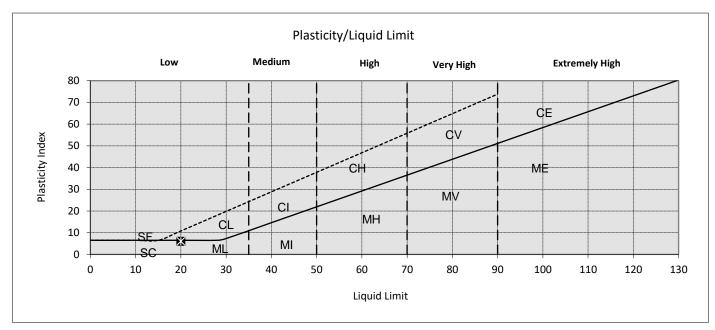
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93347

Unit 1 Carrigogna Sample Ref.: XC211-TP01 0.4-0.9m Type D Samp 3


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 09/03/2020

 2003-104
 Date Tested:
 03/04/2020

 Ian Holley
 Date Reported:
 03/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	24	
Natural Moisture Content (%)	13	
Liquid Limit (single point)(%)	20	
Plastic Limit (%)	14	
Plasticity Index	6	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

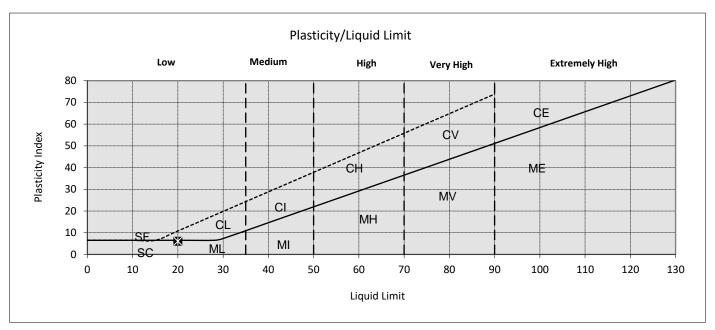
James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

Tel: 01925286880

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93347

Unit 1 Carrigogna Sample Ref.: XC211-TP01 0.4-0.9m Type D Samp 3

MidletonDate Sampled:Client InfoCo CorkDate Received:09/03/20202003-104Date Tested:03/04/2020Ian HolleyDate Reported:03/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	24	
Natural Moisture Content (%)	13	
Liquid Limit (single point)(%)	20	
Plastic Limit (%)	14	
Plasticity Index	6	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93344

 OCB Geolechnical
 Lab Ref. No.:
 \$193344

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

Order No: 2003-104 Material: Soil

Originator:Ian HolleyVisual DescriptionLight Gravel, Sandy

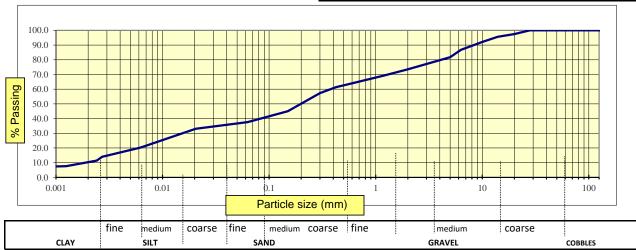
Client Ref. XC211-TP01 Type B Sample 2

Location: XC211-TP01 Type B Sample 2

Supplier: Bulk

Source: Client Info.

Depth (m): 0.4-0.9m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	100	
20 mm	97	
14 mm	96	
10 mm	92	
6.3 mm	87	
5 mm	82	
3.35 mm	78	
2 mm	74	
1.18 mm	69	
0.6 mm	64	
0.425 mm	61	
0.3 mm	57	
0.15 mm	45	
0.063 mm	38	
0.020 mm	33	
0.006 mm	20	
0.003 mm	14	
0.002 mm	11	
0.001 mm	8	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

Tel: 057 86 64885

Laboratory Test Report Determination of shear Strength by Direct Shear (Small Shearbox) in accordance with BS :1377: Part 7 : 1990 Clause 4

Project: Cork Line Level Crossing Job No.: 19-135 Lab Ref. No.: Client: OCB Geotechnical ST 93350 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton Date Reported: 05/05/2020 Material: Earthworks Order No.: 2003-104 **Visual Description:** Brown SAND Originator: Ian Holley Specification: TII Series 600

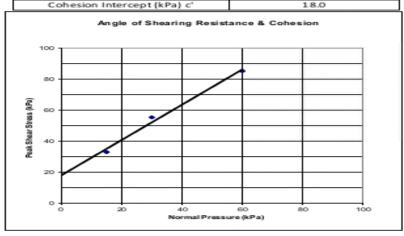
Client Ref: ST 93350

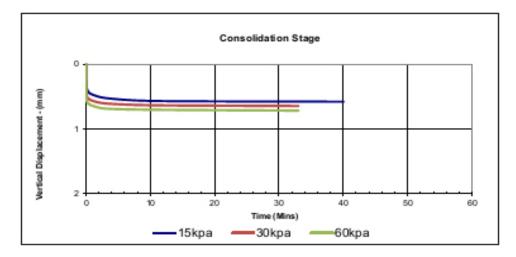
Certificate of sampling Yes Date Of Sampling: Client info

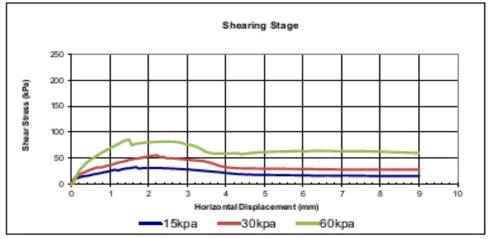
Lab Reference No.XC211-TP01 1.0-1.5m Sample 6Sampled By:OCB

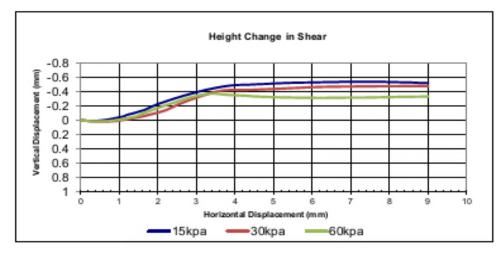
Sample Source & Ticket No. Site Won Sample Preparation: Bulk sample sieved through 20mm sieve

Sample Location / Orientation : Cork Line Level Crossings Tested Dry or Submerged: Dry


Results


SUMMARY OF TEST RESULTS:		
Angle of Shearing Resistance (°) φ' 48.5		
Cohesion Intercept (kPa) c'	18.0	


Sample Condition: Submerged


Particle Density: 2.65(Mg/m3) Assumed
Sample Preparation: Remoulded (Hand Tamped)
Material tested passing 2mm sieve

Initial Condition Stage Normal Pressure (kPa) 30 60 Height (mm) 19.47 19.23 19.41 Width (mm) 59.9 59.9 59.9 Bulk Density (Mg/m 2.08 2.10 2.08 Dry Density (Mg/m³) 1.84 1.86 1.84 Moisture Content (%) 13 13 13 Voids Ratio 0.443 0.425 0.438 Degree of Saturation 77.8 81.1 78.6 Shearing St Rate of Displacement (mm/min) 0.8 0.8 0.8 Peak Shear Stress (kPa)
Displacement at Peak Stress (mm) 32.9 55.4 85.2 1.7 2.2 1.5 Final Cond 2.12 2.14 Bulk Density (Mg/m3) 2.10 Dry Density (Mg/m3) 1.84 1.88 1.88 Moisture Content (%) 14 Angle of Shearing Resistance (°) φ 48.5 18.0

Subcontracted to a Laboratory Accredited in this Testing

Approved Signature

James Fisher Testing Services Limited James Ward, Operations Manager James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93349
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC211-TP01 Type B Sample 6

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 1.0-1.5m Sampling Reason: Request

Parameter	RESULT	
рН	7.3	
Sulphate Aqueous Extract (SO4) (mg/l)	<10	
Sulphur as S, Total (%)	<0.01	
Sulphate as SO4, Total (%)	<0.01	

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

J-2-0

Approved Signature
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

To determine the Organic Content of Soil in accordance with BS 1377

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93349
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC211-TP01 Type B Sample 6

Supplier: Client Info Date of Sampling: Client Info

Source: Client Info Sampled By: Client

Sample Location: 1.0-1.5m Sampling Reason: Request

Result:

Comments:

None

Tested in accordance with the above specifications
Subcontracted to a laboratory UKAS accredited for this testing

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB Geotechnical
Unit 1 CarrigognaLab Ref No.:ST 93348Unit 1 CarrigognaDate Received:09/03/2020MidletonDate Reported:02/04/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

 2003-104
 Material:
 Soil

Originator:Ian HolleyVisual DescriptionGrey Clay, Sandy

Client Ref. XC211-TP01 Type B Sample 6

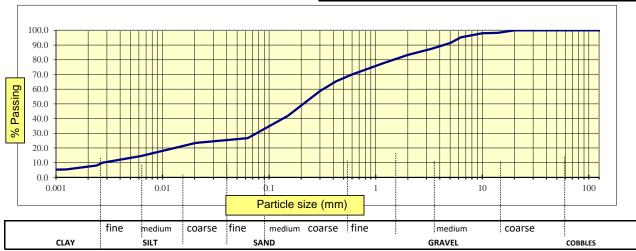
Location: XC211-TP01 Type B Sample 6

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 1.0-1.5m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	100	
20 mm	100	
14 mm	98	
10 mm	98	
6.3 mm	95	
5 mm	91	
3.35 mm	87	
2 mm	83	
1.18 mm	78	
0.6 mm	70	
0.425 mm	65	
0.3 mm	59	
0.15 mm	42	
0.063 mm	27	
0.020 mm	23	
0.006 mm	14	
0.003 mm	10	
0.002 mm	8	
0.001 mm	5	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

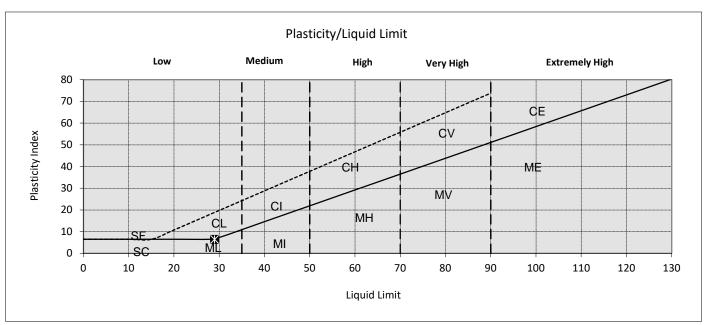
The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager



LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref No.:	ST 93352
	Unit 1 Carrigogna	Sample Ref.:	XC211-TP01 2.3-3.0m
	Midleton	Date Sampled:	Client Info
	Co Cork	Date Received:	09/03/2020

	Co Cork	Date Received:	09/03/2020
Order No:	2003-104	Date Tested:	02/04/2020
Originator:	Ian Holley	Date Reported:	21/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	25	
Natural Moisture Content (%)	24	
Liquid Limit (single point)(%)	29	
Plastic Limit (%)	22	
Plasticity Index	6	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93351 09/03/2020 Unit 1 Carrigogna **Date Received:** Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC211-TP01 Type D Sample 9

Sample Type: Bulk Location: XC211-TP01 Type D Sample 9

Date Sampled: Client Info Sample by: Client

Depth: 2.5-3.0m **Material Type:** Soil

Moisture Content (%): 20

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 057 86 64885

Laboratory Test Report Determination of shear Strength by Direct Shear (Small Shearbox) in accordance with BS :1377: Part 7 : 1990 Clause 4

Project: Cork Line Level Crossing Job No.: 19-135 Client: OCB Geotechnical Lab Ref. No.: ST 93354 Unit 1 Carrigogna Date Received: 09/03/2020 Midleton Date Reported: 22/05/2020 Material: Earthworks Order No.: 2003-104 **Visual Description:** Brown siltySAND Originator: Ian Holley Specification: TII Series 600

Client Ref: ST 93354

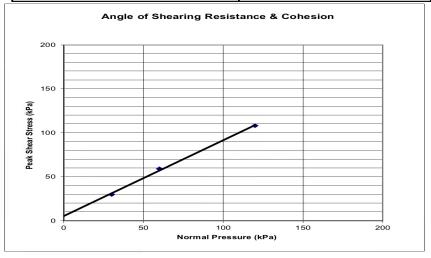
Certificate of sampling Yes Date Of Sampling: Client info

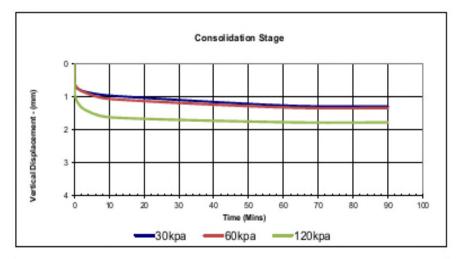
Lab Reference No.XC211-TP01 3.0-3.4m Sample 10Sampled By:OCB

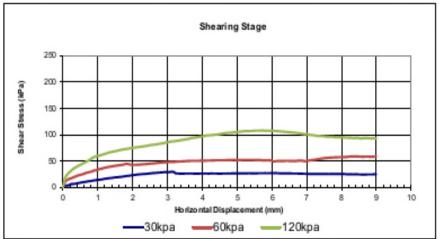
 Sample Source & Ticket No.
 Site Won
 Sample Preparation:
 Bulk sample sieved through 20mm sieve

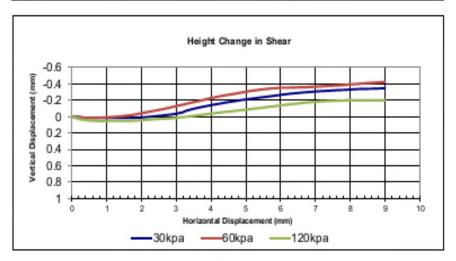
Sample Location / Orientation : Cork Line Level Crossings Tested Dry or Submerged: Dry

Results


SUMMARY OF TEST RESULTS:		
Angle of Shearing Resistance (°) φ' 40.5		
Cohesion Intercept (kPa) c'	5.3	


Sample Condition: Submerged


Particle Density: 2.70(Mg/m3) Assumed Sample Preparation: Remoulded (Hand Tamped)


Material tested passing 2mm sieve

Initial Condition			
	Stage		
	1	2	3
Normal Pressure (kPa)	30	60	120
Height (mm)	18.80	18.81	18.48
Width (mm)	59.9	59.9	59.9
Bulk Density (Mg/m³)	2.08	2.07	2.11
Dry Density (Mg/m³)	1.72	1.71	1.74
Moisture Content (%)	21	21	21
Voids Ratio	0.574	0.575	0.547
Degree of Saturation	98.8	98.6	103.6
Shearing S	tage		
Rate of Displacement (mm/min)	0.8	0.8	0.8
Peak Shear Stress (kPa)	29.8	59.1	108.0
Displacement at Peak Stress (mm)	3.1	8.3	5.7
Final Cond	ition		
Bulk Density (Mg/m³)	2.20	2.16	2.27
Dry Density (Mg/m³)	1.81	1.80	1.91
Moisture Content (%)	22	20	19
Angle of Shearing Resistance (°) φ'	40.5		
Cohesion Intercept (kPa) c'	5.3		

Subcontracted to a Laboratory Accredited in this Testing

Approved Signature

James Fisher Testing Services Limited James Ward, Operations Manager Tel: 057 8664885

<u>LABORATORY TEST REPORT</u> Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93353

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 25/03/2020

 Date Tested:
 23/03/2020

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionSandy Clay

Client Ref. XC211-TP01 Type B Sample 10

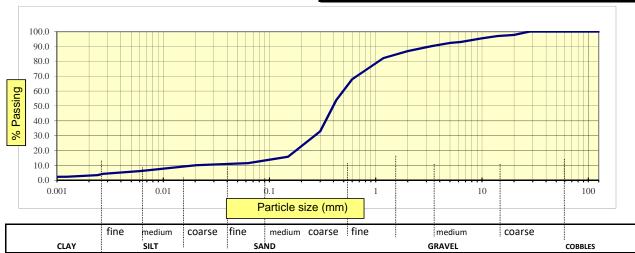
Location: XC211-TP01 Type B Sample 10

Supplier: Bulk

Source: Client Info.

Depth (m): 3.0-3.4m

Sampling Reason: Client Request


Sampled By: Client

Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	100	
20 mm	98	
14 mm	97	
10 mm	96	
6.3 mm	93	
5 mm	92	
3.35 mm	90	
2 mm	87	
1.18 mm	82	
0.6 mm	68	
0.425 mm	54	
0.3 mm	33	
0.15 mm	16	
0.063 mm	12	
0.020 mm	10	
0.006 mm	6	
0.003 mm	4	
0.002 mm	4	
0.001 mm	2	

Tested in accordance with BS 1377: Part 2: 1990 Clause 3.2, 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93357 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 13/03/2020 **Order No:** 2003-104 **Date Reported:** 25/03/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC211-TP02 Type D Sample 3

Sample Type: Bulk Location: XC211-TP02 Type D Sample 3

Date Sampled: Client Info Sample by: Client

Depth: 0.3-0.8m **Material Type:** Soil

Moisture Content (%): 21

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

LABORATORY TEST REPORT

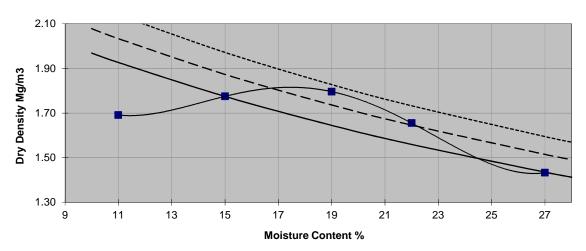
DRY DENSITY / MOISTURE CONTENT RELATIONSHIP - BS 1377: Part 4: 1990

Project: Cork Line Level Crossings Job No: 19-135 **Client: OCB Geotechnical** Lab Ref No.: ST 93356 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 03/04/2020 Co Cork **Date Reported:** 06/04/2020

Order No: 2003-104Material:SoilOriginator: Ian HolleySpecification:Client

Client Sample Ref :XC211-TP02 Type B Sample 2Sample Type :BulkSupplier:Client InfoDescription :Soil

Location: 0.3-0.8m

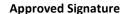

Date sampled: Client Info Comments: None

Sampling Cert: No

Rammer used :	4.5	No of layers:	3
No of sub samples :	5	% retained on 37.5mm sieve	0.3
Mould Size:	CBR	% retained on 20mm sieve	4.6

Bulk Density: Mg/m³	1.88	2.04	2.13	2.03	1.81
Moisture Content: %	11	15	19	22	27
Dry Density: Mg/m³	1.69	1.77	1.80	1.65	1.43

----- 0% Air Voids — — - 5% Air Voids — 10% Alr Voids — Poly. (Series1



Maximum Dry Density (Mg/m³)
Optimum Moisture Content (%)

1.82 18

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with BS 1377: Part 4:1990 Particle Density (Mg/m³) - 2.8 (Assumed)

James Fisher Testing Services Limited

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

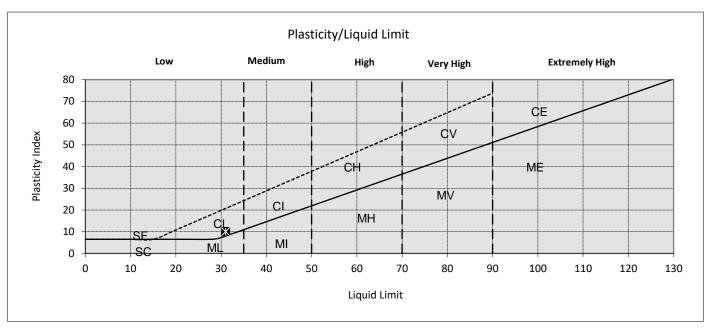
Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

Page 1 of 1

Tel: 01925286880

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93358

Unit 1 Carrigogna Sample Ref.: XC211-TP02 0.3-0.8m Type D Sample 3

Midleton
Co Cork
Date Received:
2003-104
Date Reported:
20/03/2020
Date Reported:
31/03/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	26	
Natural Moisture Content (%)	25	
Liquid Limit (single point)(%)	31	
Plastic Limit (%)	21	
Plasticity Index	10	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

Tel: 057 8664885

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377: Part 2: 1990

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93355Unit 1 CarrigognaDate Received:09/03/2020

Midleton

Date Reported: 25/03/2020

 Order No:
 2003-104
 Date Tested:
 23/03/2020

 Material:
 Soil

Originator: Ian Holley Visual Description Large Cobble, Dark Sandy Clay

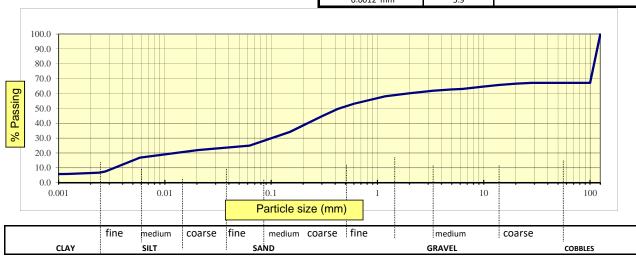
Client Ref. XC211-TP02 Type B Sample 2

Location: XC211-TP02 Type B Sample 2

Supplier: Bulk

Source: Client Info.

Depth (m): 0.3-0.8m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	67	
75 mm	67	
63 mm	67	
50 mm	67	
37.5 mm	67	
28 mm	67	
20 mm	67	
14 mm	66	
10 mm	65	
6.3 mm	63	
5 mm	63	
3.35 mm	62	
2 mm	60	
1.18 mm	58	
0.6 mm	53	
0.425 mm	50	
0.3 mm	45	
0.15 mm	34	
0.063 mm	25	
0.0205 mm	22	
0.0059 mm	17	
0.0028 mm	7.6	
0.0024 mm	6.7	
0.0012 mm	5.9	

Tested in accordance with BS 1377: Part 2: 1990 Clause 3.2, 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature
JAMES FISHER TESTING SER

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 01925 286 880

Bulk

Soil

LABORATORY TEST REPORT

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP - BS 1377: Part 4: 1990

Project: Cork Line Level Crossings Job No: 19-135 **Client: OCB Geotechnical** Lab Ref No.: ST 93360 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 03/04/2020 Co Cork **Date Reported:** 06/04/2020

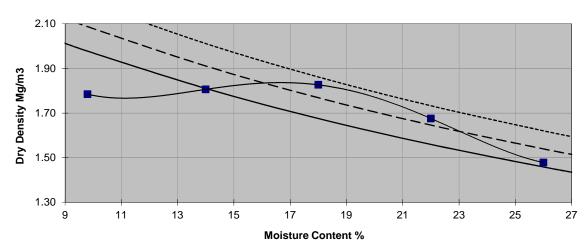
Order No: 2003-104Material:SoilOriginator: Ian HolleySpecification:Client

Client Sample Ref: XC211-TP02 Type B Sample 6 Sample Type:

Supplier: Client Info

Location: 1.6-2.1m

Date sampled: Client Info Comments: None


Sampling Cert: No

Rammer used :	4.5	No of layers:	3
No of sub samples :	5	% retained on 37.5mm sieve	0.5
Mould Size:	CBR	% retained on 20mm sieve	5.5

Description:

Bulk Density: Mg/m³	1.96	2.07	2.16	2.04	1.86
Moisture Content: %	9.8	14	18	22	26
Dry Density: Mg/m³	1.78	1.81	1.83	1.68	1.48

----- 0% Air Voids — — - 5% Air Voids — 10% Alr Voids — Poly. (Series1

Maximum Dry Density (Mg/m³)
Optimum Moisture Content (%)

1.84	_
17	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with BS 1377: Part 4:1990 Particle Density (Mg/m³) - 2.8 (Assumed)

James Fisher Testing Services Limited

Phil Thorp, Laboratory Manager

James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

Page 1 of 1

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

James Fisher
Testing Services

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93359

 OCB Geotechnical
 Lab Ref. No.:
 \$193359

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 31/03/2020

 2003-104
 Material:
 Soil

Originator: Ian Holley Visual Description Cobbly Light Clay, Sandy

Client Ref. XC211-TP02 Type B Sample 6

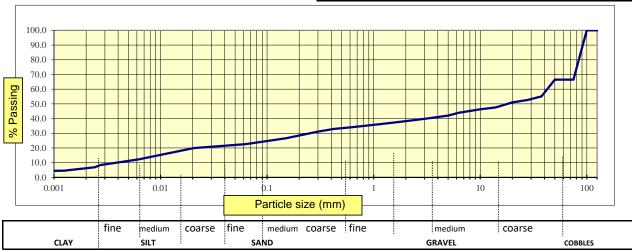
Location: XC211-TP02 Type B Sample 6

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 1.6-2.1m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	66	
63 mm	66	
50 mm	66	
37.5 mm	55	
28 mm	53	
20 mm	51	
14 mm	48	
10 mm	46	
6.3 mm	44	
5 mm	42	
3.35 mm	40	
2 mm	38	
1.18 mm	36	
0.6 mm	34	
0.425 mm	33	
0.3 mm	31	
0.15 mm	27	
0.063 mm	23	
0.020 mm	20	
0.006 mm	12	
0.003 mm	8	
0.002 mm	7	
0.001 mm	5	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93363
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC211-TP02 Type D Sample 9

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 2.7-3.2m Sampling Reason: Request

Parameter	RESULT
рН	8.4
Sulphate Aqueous Extract (SO4) (mg/l)	<10
Sulphur as S, Total (%)	0.01
Sulphate as SO4, Total (%)	0.02

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

J-2-0

Approved Signature
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93361 09/03/2020 Unit 1 Carrigogna **Date Received:** Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC211-TP02 Type D Sample 9

Sample Type: Bulk Location: XC211-TP02 Type D Sample 9

Date Sampled: Client Info Sample by: Client

Depth: 2.7-3.2m **Material Type:** Soil

Moisture Content (%): 12

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 01925286880

Order No:

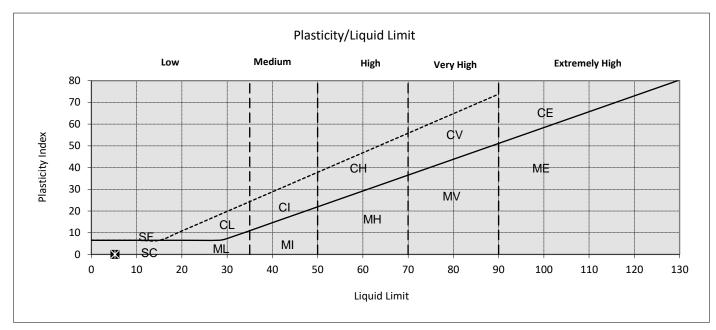
Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93362

Unit 1 Carrigogna

Sample Ref.: XC211-TP02 2.7-3.2m Type D Sample 9


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 09/03/2020

 2003-104
 Date Tested:
 26/03/2020

 Ian Holley
 Date Reported:
 31/03/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed **MATERIAL** Soil Retained 425 micron (%) 70 Natural Moisture Content (%) 11 Liquid Limit (single point)(%) Plastic Limit (%) **Non-Plastic** Plasticity Index N/A

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

0-2-8

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

Soil

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93364Unit 1 CarrigognaDate Received:09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

Material:

Originator:Ian HolleyVisual DescriptionLight Clay, Sandy

Client Ref. XC211-TP03 Type B Sample 2

Location: XC211-TP03 Type B Sample 2

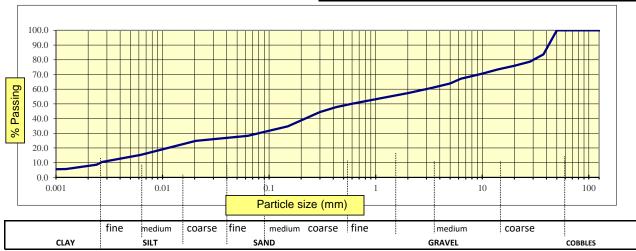
Supplier: Bulk

Source: Client Info.

2003-104

Order No:

Depth (m): 0.3-0.8m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	84	
28 mm	79	
20 mm	76	
14 mm	73	
10 mm	71	
6.3 mm	67	
5 mm	64	
3.35 mm	61	
2 mm	57	
1.18 mm	54	
0.6 mm	50	
0.425 mm	48	
0.3 mm	44	
0.15 mm	35	
0.063 mm	28	
0.020 mm	25	
0.006 mm	15	
0.003 mm	11	
0.002 mm	9	
0.001 mm	6	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93367
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	06/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	31/03/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC211-TP03 Type D Sample 7

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 1.3-1.8m Sampling Reason: Request

Parameter	RESULT
рН	7.8
Sulphate Aqueous Extract as (SO4) (mg/l)	11
Sulphur as S, Total (%)	0.01
Sulphate as SO4, Total (%)	0.02

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93465 Unit 1 Carrigogna **Date Received:** 09/03/2020 Midleton **Date Tested:** 13/03/2020 **Order No:** 2003-104 **Date Reported:** 25/03/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC211-TP03 Type D Sample 7

Sample Type: Bulk Location: XC211-TP03 Type D Sample 7

Date Sampled: Client Info Sample by: Client

Depth: 1.3-1.8m **Material Type:** Soil

Moisture Content (%): 18

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

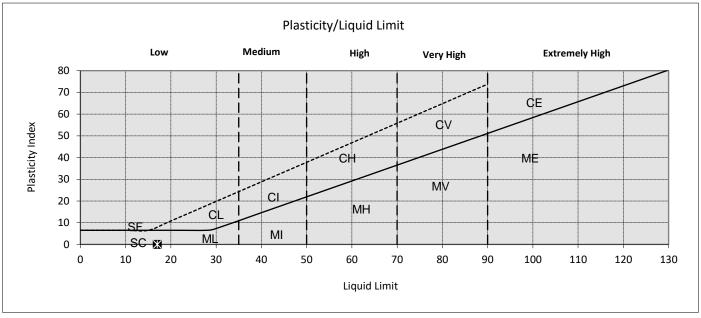
James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 01925286880

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93366

Unit 1 Carrigogna Sample Ref.: XC211-TP03 1.3-1.8m Type D Sample 7

Midleton
Co Cork
2003-104
Date Received:
Date Received:
Date Received:
18/03/2020
Date Reported:
31/03/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed **MATERIAL** Soil Retained 425 micron (%) 56 Natural Moisture Content (%) 12 Liquid Limit (single point)(%) **17** Plastic Limit (%) **Non-Plastic** Plasticity Index N/A

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93368 09/03/2020 Unit 1 Carrigogna **Date Received:** Midleton **Date Tested:** 26/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC211-TP03 Type D Sample 9

Sample Type: Bulk Location: XC211-TP03 Type D Sample 9

Date Sampled: Client Info Sample by: Client

Depth: 2.5-3.0m **Material Type:** Soil

Moisture Content (%): 11

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

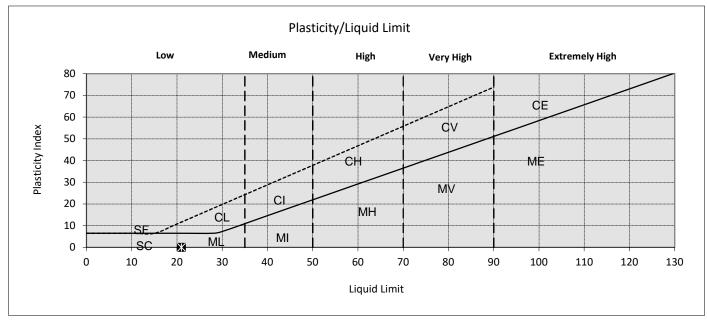
Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93369

Unit 1 Carrigogna Sample Ref.: XC211-TP03 2.5-3.0m Type D S.9

MidletonDate Sampled:Client InfoCo CorkDate Received:09/03/20202003-104Date Tested:28/03/2020Ian HolleyDate Reported:21/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	25	
Natural Moisture Content (%)	10	
Liquid Limit (single point)(%)	21	
Plastic Limit (%)	Non-Plastic	
Plasticity Index	N/A	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

1-2-8

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

James Fisher Testing Services (Ireland) Ltd Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois Tel: 057 8664885

James Fisher
Testing Services
Fisher

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

 Project:
 Cork Line Level Crossings
 Job No:
 19-135

 Client:
 OCB Geotechnical
 Lab Ref No.:
 ST 93370

 Unit 1 Considerance
 Page Resolved:
 90/93/2030

 Unit 1 Carrigogna
 Date Received:
 09/03/2020

 Midleton
 Date Reported:
 02/04/2020

 Date Tested:
 31/03/2020

Order No: 2003-104 Material: Soil

Originator: Ian Holley Visual Description Large Cobble, Light Clay, Sandy

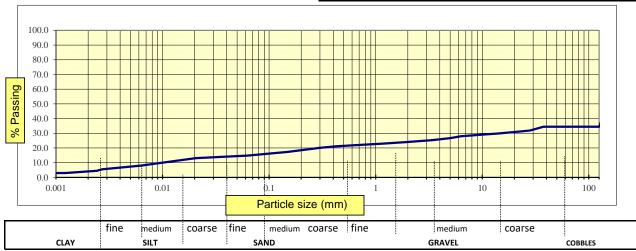
Client Ref. XC211-TP03 Type B Sample 11

Location: XC211-TP03 Type B Sample 11

Supplier: Bulk

Source: Client Info.

Depth (m): 3.7-4.2m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	34	
100 mm	34	
75 mm	34	
63 mm	34	
50 mm	34	
37.5 mm	34	
28 mm	32	
20 mm	31	
14 mm	30	
10 mm	29	
6.3 mm	28	
5 mm	27	
3.35 mm	25	
2 mm	24	
1.18 mm	23	
0.6 mm	22	
0.425 mm	21	
0.3 mm	20	
0.15 mm	17	
0.063 mm	15	
0.020 mm	13	
0.006 mm	8	
0.003 mm	6	
0.002 mm	5	
0.001 mm	3	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

 \square James Ward, Operations Manager

INDEX PROPERTIES - SUMMARY OF RESULTS

		Samp	le			р	p_{d}	W	< 425	W_L	W_{P}	l _P	$p_{\!\scriptscriptstyle \mathbb{S}}$	
Hole No.	No.	Dept	h (m)	type	Soil Description				μm sieve					Remarks
		from	to	31		Mg.	/m3	%	%	%	%		Mg/m3	
XC211-CP01	6	0.70	1.90	D	Brown slightly gravelly sandy CLAY			9.6	49 s	19 b	14	5		
XC211-CP01	9	1.90	2.50	D	Brown slightly sandy slightly gravelly CLAY			4.1	58 s	27 b	15	12		
XC211-CP01	14	3.50	4.50	D	Brown sandy slightly gravelly silty CLAY			9.7	61 s	20 a	13	7		
XC211-CP01	18	5.50	6.50	D	Brown slightly sandy gravelly CLAY.			2.1	41 s	23 b	13	10		
XC211-CP01	22	7.20	8.00	D	Brown slightly sandy slightly gravelly CLAY			12	57 s	27 b	15	12		
XC211-CP01	27	9.00	10.00	D	Brown slightly sandy slightly gravelly CLAY			14	62 s	30 a	15	15		
XC211-CP02	6	1.20	2.00	D	Brown slightly sandy slightly gravelly CLAY.			12	60 s	26 b	14	12		
XC211-CP02	12	3.00	4.00	D	Brown slightly sandy slightly gravelly CLAY			9.8	62 s	31 b	17	14		
XC211-CP02	16	5.00	6.00	D	Brown slightly sandy slightly gravelly CLAY			9.8	62 s	29 b	16	13		
XC211-CP02	21	7.00	8.00	D	Brown slightly sandy slightly gravelly CLAY.			12	74 s	30 a	16	14		
XC211-CP02	25	9.00	10.00	D	Brown sandy slightly gravelly CLAY			15	61 s	26 a	14	12		
XC211-CP02	29	11.00	12.00	D	Brown slightly sandy slightly gravelly CLAY			36	58 s	30 a	16	14		

General notes: All above tests carried out to BS1377 : 1990 unless annotated otherwise. See Remarks for further details

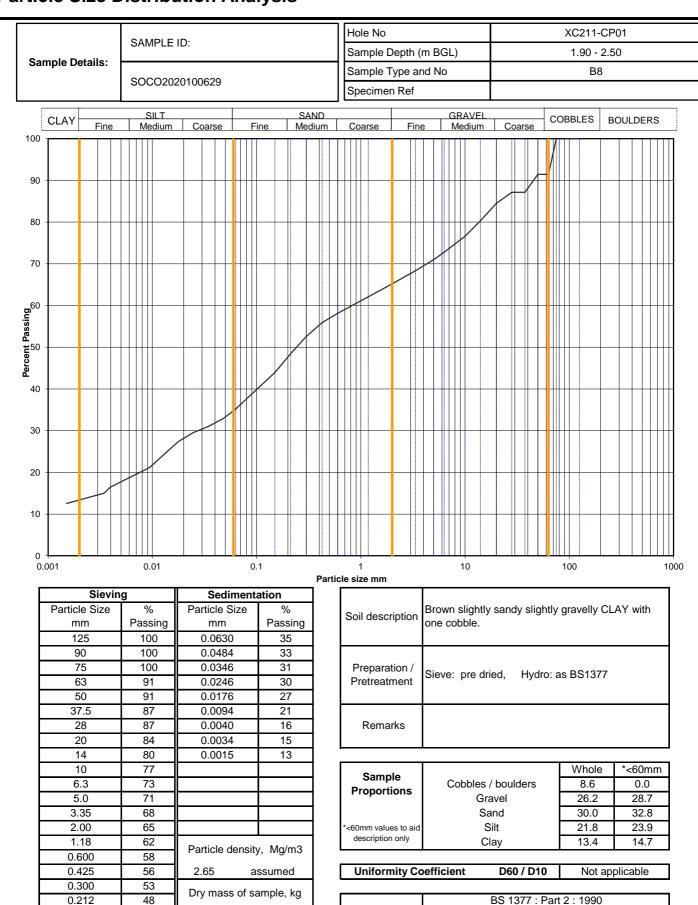
Key: p bulk density, linear WL Liquid limit WP Plastic limit <425um preparation ps particle density

pd dry density a 4 point cone test NP non - plastic n from natural soil -g = gas jar

w moisture content b 1 point cone test IP Plasticity Index s sieved specimen -p = small pyknometer

* test carried out to BS EN ISO 17892 h removed by hand

QA Ref SLR 1 Rev 2.95 Mar 17	
	SOCOTEC


Project No N9426-20

Project Name Cork Line Level Crossings

Figure INDX

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Particle Size Distribution Analysis

QA Ref SLR 2,9 Rev 2.22 Jul 17

44

35

0.150

0.063

4.5

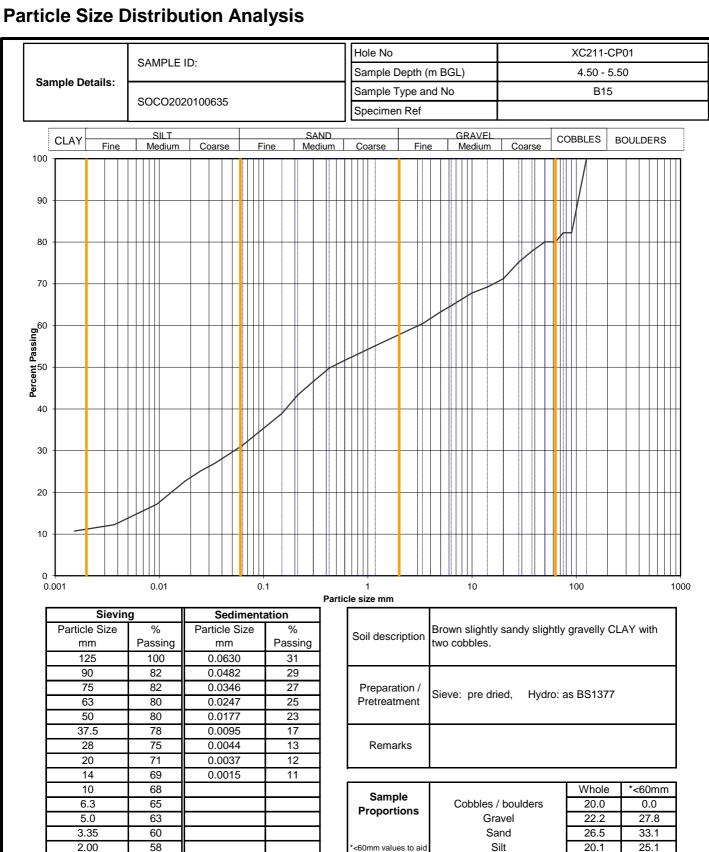
Project No N9426-20

Project Name Cork Line Level Crossings

Test Method

Figure

9.2 wet sieve


9.5 hydrometer

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Sieving

Sedimentation

Proportions	0000.007 000.00.0	_0.0	0.0
Froportions	Gravel	22.2	27.8
	Sand	26.5	33.1
*<60mm values to aid	Silt	20.1	25.1
description only	Clay	11.2	14.0

	L	Uniformity Coefficient	D60 / D10	Not applicable
--	---	------------------------	-----------	----------------

	BS 1377 : Part 2 : 1990					
Test Method	Sieving	9.2 wet sieve				
	Sedimentation	9.5 hydrometer				

QA Ref SLR 2,9 Rev 2.22 Jul 17

1.18

0.600

0.425

0.300

0.212

0.150

0.063

55

52

50

47

43

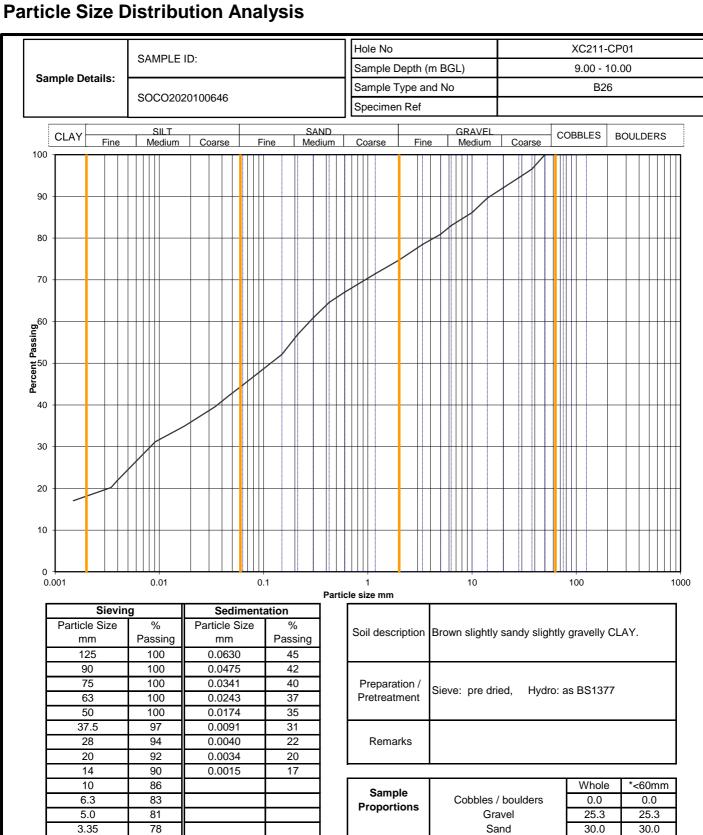
39

31

Particle density, Mg/m3

Dry mass of sample, kg

20.0


assumed

N9426-20 Project No

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Sample Proportions	Cobbles / boulders	0.0	0.0
Froportions	Gravel	25.3	25.3
	Sand	30.0	30.0
*<60mm values to aid	Silt	26.6	26.6
description only	Clay	18.1	18.1
	•		-

	L	Uniformity Coefficient	D60 / D10	Not applicable
--	---	------------------------	-----------	----------------

	BS 1377 : Part 2 : 1990						
Test Method	Sieving	9.2 wet sieve					
	Sedimentation	9.5 hydrometer					

QA Ref SLR 2,9 Rev 2.22 Jul 17

2.00

1.18

0.600

0.425

0.300

0.212

0.150

0.063

75

67

65

61

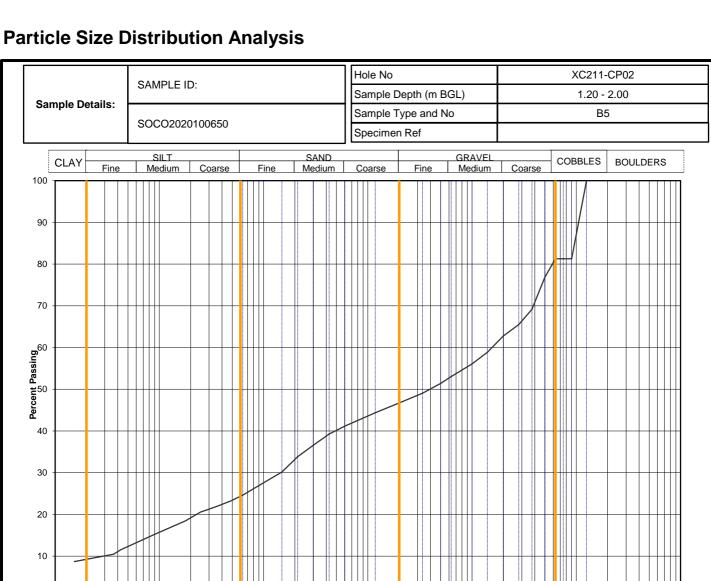
57 52

45

Particle density, Mg/m3

Dry mass of sample, kg

2.8


assumed

N9426-20 Project No

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Particle size mm

Sieving Sedimentation		ation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	25
90	81	0.0486	23
75	81	0.0347	22
63	81	0.0248	21
50	77	0.0178	18
37.5	69	0.0094	15
28	66	0.0043	12
20	63	0.0036	10
14	59	0.0015	9
10	56		
6.3	53		
5.0	51		
3.35	49		
2.00	47		
1.18	44	Particle density	/ Ma/m2
0.600	41	Particle density, Mg/m3	
0.425	39	2.65 assumed	
0.300	37	Dry mass of sample, kg	
0.212	34	יום און אוטן אוט און אוטן און און און און און און און און און או	
0.150	30	8.4	
0.063	25	8.4	

0.01

0.1

Soil description	Brown slightly sandy gravelly CLAY with one cobble.	
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
Remarks		

100

1000

10

Sample		Whole	*<60mm
Proportions	Cobbles / boulders	18.7	0.0
Froportions	Gravel	34.6	42.6
	Sand	22.1	27.2
*<60mm values to aid	Silt	15.4	18.9
description only	Clay	9.2	11.3

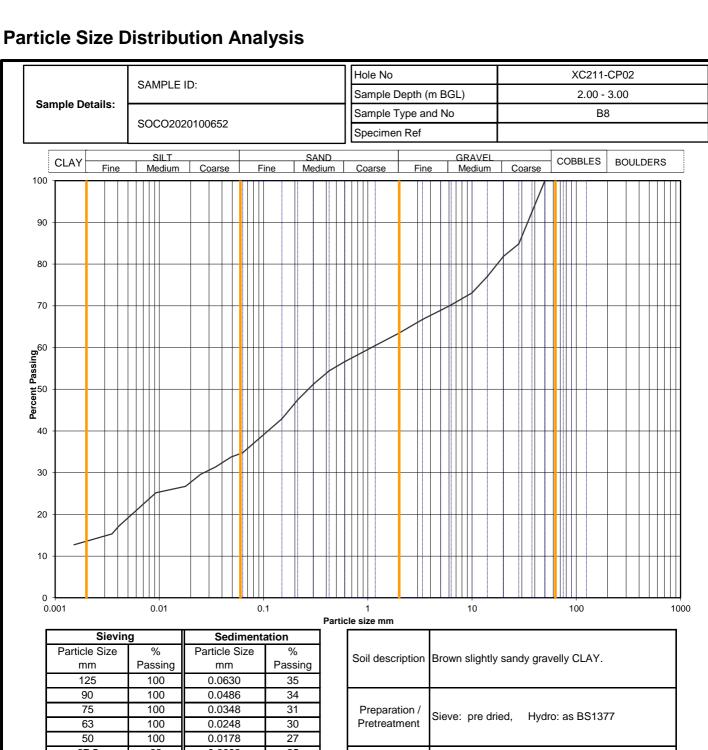
Uniformity Coef	ficient	D60 / D10	4858

	BS 1377 : Part 2 : 1990		
Test Method	d Sieving 9.2 wet siev		
	Sedimentation	9.5 hydrometer	

QA Ref SLR 2,9 Rev 2.22 Jul 17

0

0.001



Project No N9426-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Sieving		Sedimentation	
Particle Size	%	Particle Size	%
mm	Passing	mm	Passing
125	100	0.0630	35
90	100	0.0486	34
75	100	0.0348	31
63	100	0.0248	30
50	100	0.0178	27
37.5	92	0.0093	25
28	85	0.0041	17
20	82	0.0035	15
14	77	0.0015	13
10	73		
6.3	70		
5.0	69		
3.35	67		
2.00	63		
1.18	60	Partiala danait	, Ma/m2
0.600	57	Particle density, Mg/m3	
0.425	54	2.65 assumed	
0.300	51	Dry mass of cample kg	
0.212	47	Dry mass of sample, kg	
0.150	43	1	
0.063	35	2.3	

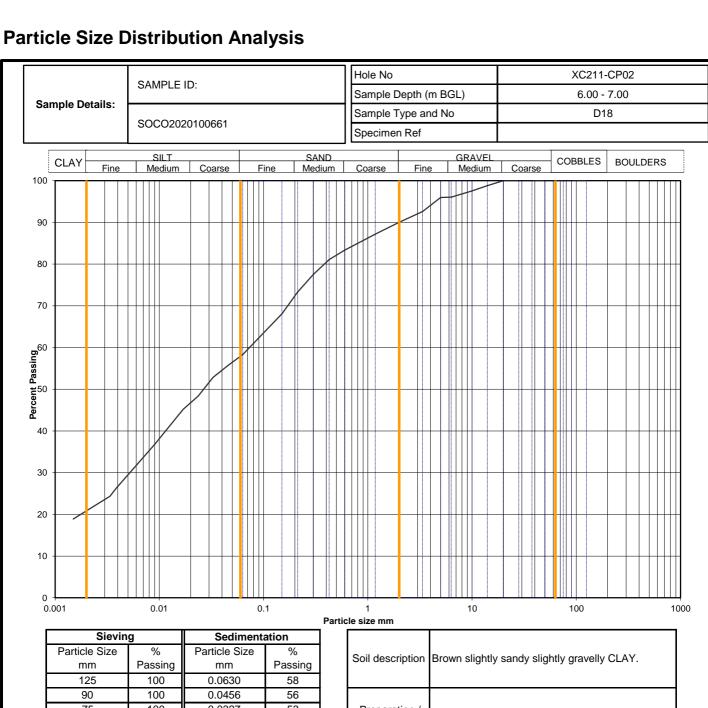
Soil description	Brown slightly sandy gravelly CLAY.	
Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
Remarks		

Sample		Whole	*<60mm
Proportions	Cobbles / boulders	0.0	0.0
Froportions	Gravel	36.5	36.5
	Sand	28.7	28.7
*<60mm values to aid	Silt	21.2	21.2
description only	Clay	13.6	13.6

Uniformity Coefficient D	60 / D10 Not applicable
--------------------------	-------------------------

	BS 1377 : Part 2 : 1990		
Test Method	d Sieving 9.2 wet sieve		
	Sedimentation	9.5 hydrometer	

QA Ref SLR 2,9 Rev 2.22 Jul 17



Project No N9426-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Sieving		Sediment	ation
Particle Size	%	Particle Size %	
mm	Passing	mm	Passing
125	100	0.0630	58
90	100	0.0456	56
75	100	0.0327	53
63	100	0.0236	48
50	100	0.0169	45
37.5	100	0.0091	37
28	100	0.0039	26
20	100	0.0034	24
14	99	0.0015	19
10	98		
6.3	96		
5.0	96		
3.35	93		
2.00	90		
1.18	87	Dartiala danaiti	, Ma/m2
0.600	83	Particle density, Mg/m3	
0.425	81	2.65 assumed	
0.300	78	Dry mass of sample lea	
0.212	73	Dry mass of sample, kg	
0.150	68	1.0	
0.063	58	1.0	

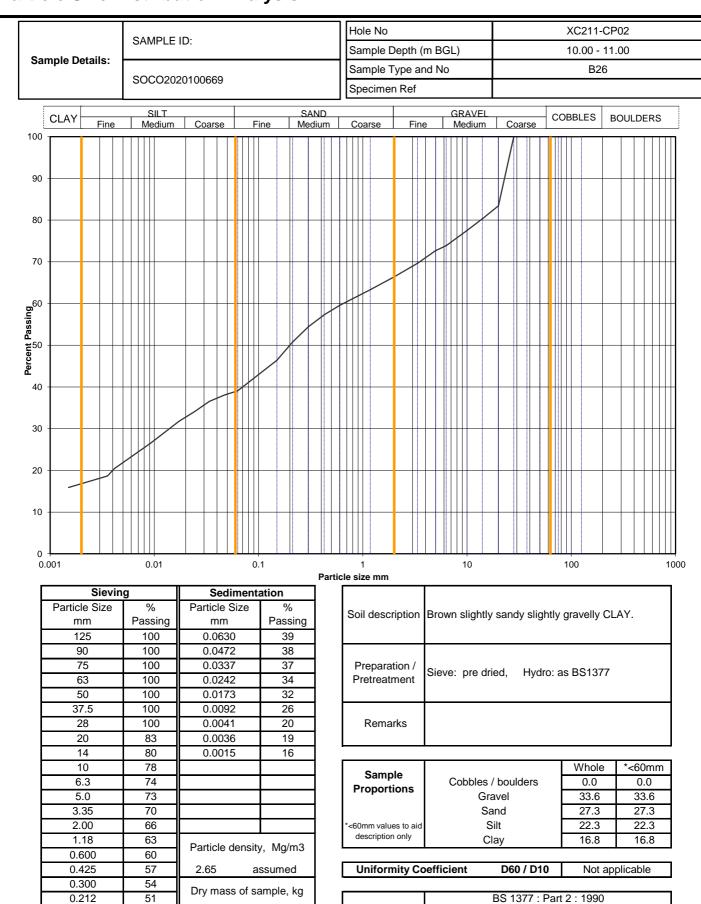
S	Soil description	Brown slightly sandy slightly gravelly CLAY.	
	Preparation / Pretreatment	Sieve: pre dried, Hydro: as BS1377	
	Remarks		

Sample		Whole	*<60mm		
Proportions	Cobbles / boulders	0.0	0.0		
Froportions	Gravel	10.0	10.0		
	Sand	31.7	31.7		
*<60mm values to aid	Silt	37.4	37.4		
description only	Clay	20.9	20.9		

I dilliditility coefficient bool bid I not applicable	Uniformity Coefficient	Not applicable	D60 / D10
---	------------------------	----------------	-----------

Test Method	BS 1377 : Part 2 : 1990							
	Sieving	9.2 wet sieve						
	Sedimentation	9.5 hydrometer						

QA Ref SLR 2,9 Rev 2.22 Jul 17


Project No N9426-20

Project Name Cork Line Level Crossings **Figure**

PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

Particle Size Distribution Analysis

QA Ref SLR 2,9 Rev 2.22 Jul 17

0.150

0.063

46

39

3.5

Project No N9426-20

Project Name Cork Line Level Crossings

Test Method

Figure

9.2 wet sieve

9.5 hydrometer

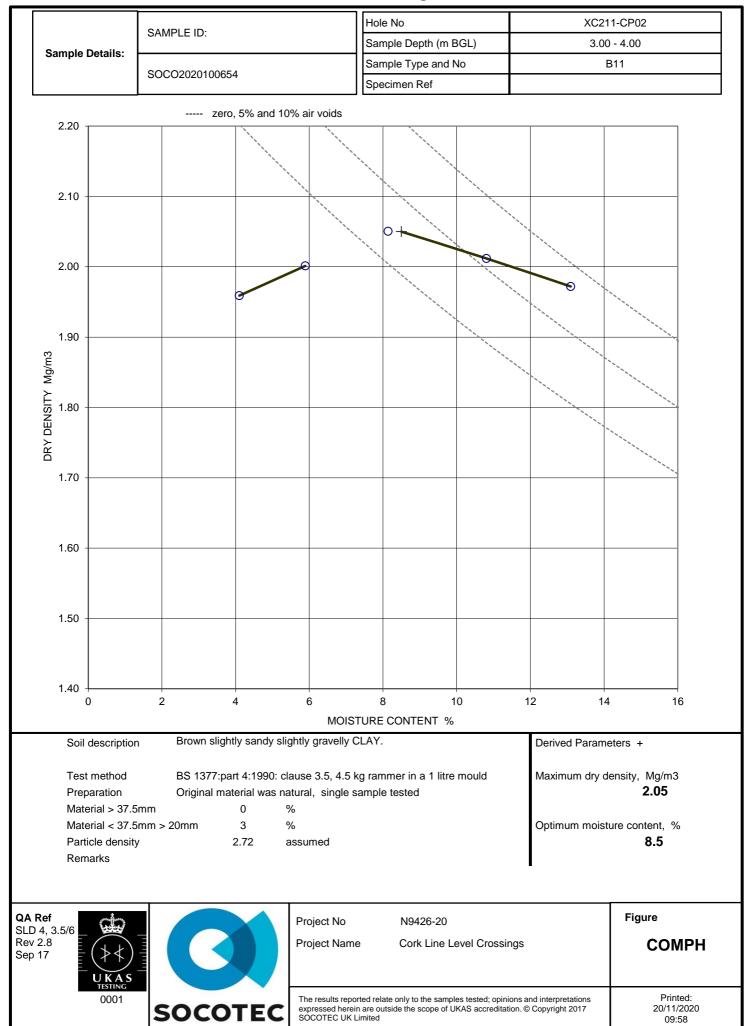
PSD

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2016 SOCOTEC UK Limited

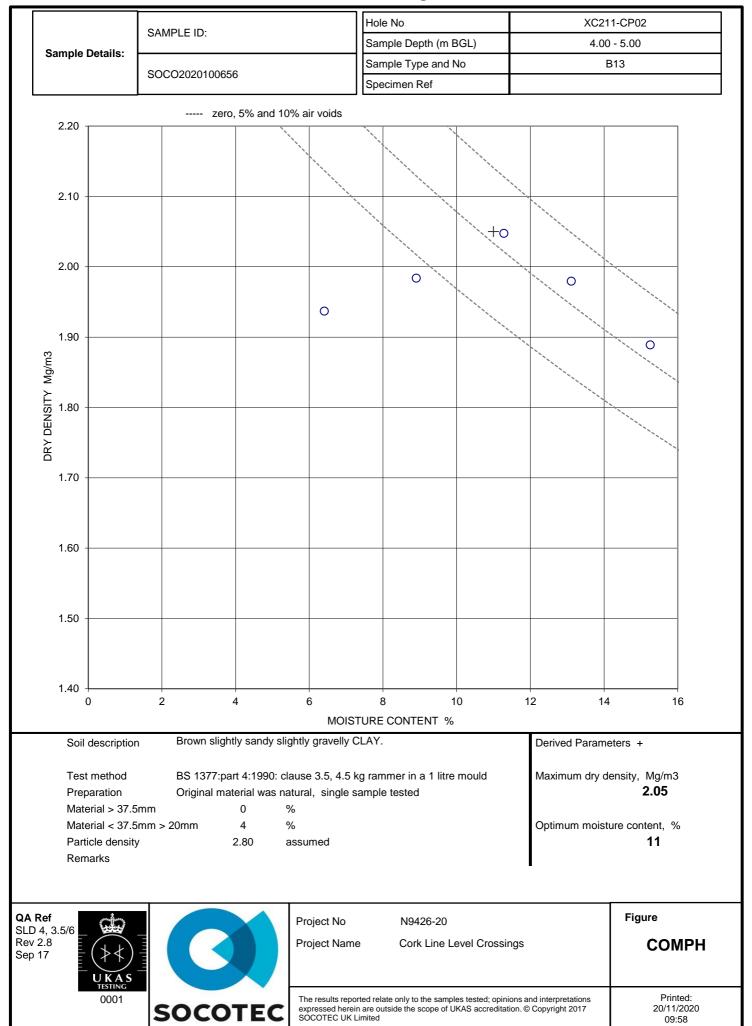
Sieving

Sedimentation

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS


0001

SOCOTEC


	Sample						Der	nsity	w	Test	Dia.	ó3					Membrane	
Hole No.	No.	Depth (m)		typo	Soil Des	scription	bulk dry		type	type			Axial strain ó1 - ó3		си	М О	Thickness	Remarks
	INO.	from	to	type				mm	kPa	%	kPa	kPa	D E	mm				
XC211-CP02	19	7.50		U	Firm light brown slightly s CLAY.	sandy slightly gravelly 2.27 2.02			12	UUM	103.7 103.7 103.7	75 150 300	3.0 4.9 19.7	34 44 75	17 22 37	Р	0.3	
General notes:	Tosts of	arried ov	t in acco	rdance	with BS1377: Part 7: 1	990 clause 8 for sing	le etac	e dan	se 0 for	multists	ige test	Spoo	rimene	nomino	ally 2·1	heigh	nt diameter	ratio and tested
_ 5.15.di 110166.	at a rate	e of strair	n of 2%/i	minute	, unless annotated other a vertical orientation un	rwise. Latex rubber m	embrar											
Legend	UU - single stage test (may be in sets of specimens) 63 cell pressure Mode of failure P UUM - multistage test on a single specimen 61 - 63 deviator stress B							plastic brittle										
QA Ref	Project No. N9426-20 Figure								e									
SLR 2 Rev 2.8 Apr 19	Project Name Cork Line Level Crossings										UUSUM							
	UKAS TESTING 0001 The results reported relate only to the samples tested; oninions and interpretations																	

The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2019 SOCOTEC UK Limited

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: HEAVY COMPACTION, 4.5 kg rammer

DRY DENSITY / MOISTURE CONTENT RELATIONSHIP BS1377: PART 4: 1990: HEAVY COMPACTION, 4.5 kg rammer

Appendix H	Environmental Laboratory Test Results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-07165-1

Initial Date of Issue: 12-Mar-2020

Client Environmental Laboratory Services Ltd

Client Address: Acorn Business Campus

Mahon Industrial Park

Blackrock Cork Ireland

Contact(s): Emer Kearney

Results

Project Soil Samples

Quotation No.: Q20-19728 Date Received: 05-Mar-2020

Order No.: 05-Mar-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 11-Mar-2020

Date Approved: 12-Mar-2020

Approved By:

Details: Darrell Hall, Director

Project: Soil Samples						 			
Client: Environmental Laboratory			Che	ntest J	ob No ·		20-07165	20-07165	
Services Ltd			Onci	incsi o	JD 140		20-07 103	20-07 103	
Quotation No.: Q20-19728			Chemte	st Sam	ple ID.:		981122	981123	
Order No.: 6897	Client Sample Ref.:				176540/003	176540/004			
	Client Sample ID.:				3	4			
			Sa	ample Lo	ocation:		XC211-TP01	XC211-TP01	
				Sampl	e Type:		SOIL	SOIL	
				Top De	oth (m):		0.05	3.00	
				Date Sa	ampled:		20-Feb-2020	20-Feb-2020	
Determinand	Accred.	SOP	Type	Units					
рН	U	1010	10:1		N/A		10.0	8.6	
Cyanide (Free)	U	1300	10:1	mg/l	0.050		< 0.050	< 0.050	
Arsenic (Dissolved)	U	1450	10:1	μg/l	1.0		1.2	2.2	
Boron (Dissolved)	U	1450	10:1	μg/l	20		< 20	< 20	
Barium (Dissolved)	U	1450	10:1	μg/l	5.0		< 5.0	7.4	
Beryllium (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0	
Cadmium (Dissolved)	U	1450	10:1	μg/l	0.080		< 0.080	< 0.080	
Chromium (Dissolved)	U	1450	10:1	μg/l	1.0		1.8	5.1	
Copper (Dissolved)	U	1450	10:1	μg/l	1.0		1.8	2.4	
Mercury (Dissolved)	U	1450	10:1	μg/l	0.50		< 0.50	< 0.50	
Nickel (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0	
Lead (Dissolved)	U	1450	10:1	μg/l	1.0		2.3	6.4	
Selenium (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0	
Vanadium (Dissolved)	U	1450	10:1	μg/l	1.0		1.9	8.6	
Zinc (Dissolved)	U	1450	10:1	μg/l	1.0		3.5	16	
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	5.0		< 5.0	< 5.0	
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10		36	< 0.10	
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10	
Aromatic TPH >C35-C44	N	1680	10:1	μg/l	50.00		< 50	< 50	
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	5.0		36	< 5.0	
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10		36	< 10	
Benzene	U	1760	10:1	μg/l	1.0		< 1.0	< 1.0	
Toluene	Ü	1760	10:1	μg/l	1.0		< 1.0	< 1.0	
Ethylbenzene	Ü	1760	10:1	µg/l	1.0		< 1.0	< 1.0	

Total Of 16 PAH's

Results - Leachate

Project: Soil Samples Client: Environmental Laboratory Chemtest Job No.: 20-07165 20-07165 Services Ltd Quotation No.: Q20-19728 Chemtest Sample ID.: 981122 981123 Order No.: 6897 Client Sample Ref. 176540/003 176540/004 Client Sample ID. 3 4 XC211-TP01 XC211-TP01 Sample Type: SOIL SOIL Top Depth (m): 0.05 3.00 Date Sampled: 20-Feb-2020 20-Feb-2020 Determinand Accred. SOP Type Units LOD 1760 m & p-Xylene 10:1 μg/l 1.0 < 1.0 < 1.0 o-Xylene U 1760 10:1 μg/l 1.0 < 1.0 < 1.0 Methyl Tert-Butyl Ether Ν 1760 10:1 1.0 μg/l < 1.0 < 1.0 Naphthalene 1800 10:1 0.10 32 < 0.10 μg/l Acenaphthylene 1800 10:1 0.10 < 0.10 < 0.10 μg/l Acenaphthene 0.10 U 1800 10:1 μg/l < 0.10 < 0.10 Fluorene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Phenanthrene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Anthracene U 0.10 1800 10:1 μg/l < 0.10 < 0.10 Fluoranthene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Pyrene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Benzo[a]anthracene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Chrysene U 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Benzo[b]fluoranthene 1800 10:1 0.10 < 0.10 < 0.10 μg/l Benzo[k]fluoranthene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Benzo[a]pyrene 1800 10:1 0.10 < 0.10 < 0.10 μg/l Indeno(1,2,3-c,d)Pyrene U 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Dibenz(a,h)Anthracene 1800 10:1 μg/l 0.10 < 0.10 < 0.10 Benzo[g,h,i]perylene 1800 10:1 0.10 < 0.10 < 0.10 μg/l

1800

10:1

μg/l

2.0

32

< 2.0

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35, >C35–C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21–C35*, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C35*, >C35–C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-07190-1

Initial Date of Issue: 11-Mar-2020

Client Environmental Laboratory Services Ltd

Client Address: Acorn Business Campus

Mahon Industrial Park

Blackrock Cork Ireland

Contact(s): Emer Kearney

Results

Project Soil Testing

Quotation No.: Q20-19728 Date Received: 05-Mar-2020

Order No.: 6881 Date Instructed: 05-Mar-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 11-Mar-2020

Date Approved: 11-Mar-2020

Approved By:

Details: Darrell Hall, Director

Client: Environmental Laboratory			Che	mtest J	ob No.:		20-07190	20-07190
Services Ltd			01 1	1.0	- 15		001010	001070
Quotation No.: Q20-19728		(st Sam	•		981249	981250
Order No.: 6881		Client Sample Ref. Client Sample ID.					176306/003	176306/004
					•		3.0m	0.05m
			Sa	ample L			TP02	TP02
					e Type:		SOIL	SOIL
			_	Date Sa			20-Feb-2020	20-Feb-2020
Determinand	Accred.	SOP	Type	Units				
pH	U	1010	10:1		N/A		8.6	7.9
Cyanide (Free)	U	1300	10:1	mg/l	0.050		< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Boron (Dissolved)	U	1450	10:1	μg/l	20		< 20	< 20
Barium (Dissolved)	U	1450	10:1	μg/l	5.0		< 5.0	< 5.0
Beryllium (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	μg/l	0.080		< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Mercury (Dissolved)	U	1450	10:1	μg/l	0.50		< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Lead (Dissolved)	U	1450	10:1	μg/l	1.0		56	< 1.0
Selenium (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	μg/l	1.0		< 1.0	1.9
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	5.0		< 5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10		240	< 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10		220	30
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10		72	< 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10		< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1680	10:1	μg/l	50.00		< 50	< 50
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	5.0		540	31
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10		540	30
Benzene	ΙÜ	1760	10:1	μg/l	1.0		< 1.0	< 1.0
Toluene	Ιΰ	1760	10:1	μg/l	1.0		< 1.0	< 1.0
Ethylbenzene	Ιΰ	1760	10:1	μg/l	1.0		< 1.0	< 1.0
m & p-Xylene	Ιυ	1760	10:1	μg/l	1.0		< 1.0	< 1.0

Results - Leachate

Client: Environmental Laboratory								
Services Ltd		Chemtest Job No.:				20-07190	20-07190	
Quotation No.: Q20-19728		(Chemte	st Sam	ple ID.:		981249	981250
Order No.: 6881			Clier	nt Samp	le Ref.:		176306/003	176306/004
			Clie	ent Sam	ple ID.:		3.0m	0.05m
			Sa	ample Lo	ocation:		TP02	TP02
				Sampl	е Туре:		SOIL	SOIL
				Date Sa	ampled:		20-Feb-2020	20-Feb-2020
Determinand	Accred.	SOP	Туре	Units	LOD			
o-Xylene	U	1760	10:1	μg/l	1.0		< 1.0	< 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	μg/l	1.0		< 1.0	< 1.0
Naphthalene	U	1800	10:1	μg/l	0.10		180	< 0.10
Acenaphthylene	U	1800	10:1	μg/l	0.10		3.7	< 0.10
Acenaphthene	U	1800	10:1	μg/l	0.10		28	< 0.10
Fluorene	U	1800	10:1	μg/l	0.10		16	< 0.10
Phenanthrene	U	1800	10:1	μg/l	0.10		22	< 0.10
Anthracene	U	1800	10:1	μg/l	0.10		3.2	< 0.10
Fluoranthene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Pyrene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Chrysene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	μg/l	0.10		< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	μg/l	2.0		250	< 2.0

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
981248	176306/002	2	TP02	17-Feb-2020	В	Amber Glass 250ml
981248	176306/002	2	TP02	17-Feb-2020	В	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35, >C35–C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21–C35*, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C35*, >C35–C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Eurofins Chemtest Ltd.

Depot Road

Newmarket

CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 20-16827-1

Initial Date of Issue: 08-Jul-2020

Client Environmental Laboratory Services Ltd

Client Address: Acorn Business Campus

Mahon Industrial Park

Blackrock Cork Ireland

Contact(s): Emer Kearney

Results

Project Soil Samples

Quotation No.: Q20-19728 Date Received: 02-Jul-2020

Order No.: 7423 Date Instructed: 02-Jul-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 08-Jul-2020

Date Approved: 08-Jul-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Leachate

Project: Soil Samples

Client: Environmental Laboratory Services Ltd			Che	mtest J	ob No.:	20-16827	20-16827
Quotation No.: Q20-19728		Chemtest Sample ID.:					1025421
Order No.: 7423				nt Samp		183057/001	183057/002
			Cli	ent Sam		1	2
					е Туре:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	_		
рН	U	1010	10:1		N/A	10.3	9.2
Cyanide (Free)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	μg/l	1.0	3.2	< 1.0
Boron (Dissolved)	U	1450	10:1	μg/l	20	45	33
Barium (Dissolved)	U	1450	10:1	μg/l	5.0	6.0	5.4
Beryllium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	μg/l	0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	μg/l	1.0	4.7	2.1
Copper (Dissolved)	U	1450	10:1	μg/l	1.0	2.4	1.4
Mercury (Dissolved)	U	1450	10:1	μg/l	0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	μg/l	1.0	4.3	< 1.0
Lead (Dissolved)	U	1450	10:1	μg/l	1.0	3.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	μg/l	1.0	5.7	< 1.0
Zinc (Dissolved)	U	1450	10:1	μg/l	1.0	10	2.9
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C35-C44	N	1680	10:1	μg/l	50.00	[A] < 50	[A] < 50
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10	[A] < 10	[A] < 10
Benzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Toluene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0

Results - Leachate

Project: Soil Samples

1 TO JOST COM COMPICO							
Client: Environmental Laboratory Services Ltd		Chemtest Job No.:				20-16827	20-16827
Quotation No.: Q20-19728		(Chemte	st Sam	ple ID.:	1025420	1025421
Order No.: 7423			Clie	nt Samp	le Ref.:	183057/001	183057/002
			Cli	ent Sam	ple ID.:	1	2
				Sampl	е Туре:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
Naphthalene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluorene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Phenanthrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Chrysene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	μg/l	2.0	< 2.0	< 2.0

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Eurofins Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1025420	183057/001	1			А	Amber Glass 250ml
1025420	183057/001	1			А	Plastic Tub 500g
1025421	183057/002	2			А	Amber Glass 250ml
1025421	183057/002	2			А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8–C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21–C35*, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C35*, >C35–C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix I	Pre & Post Site Condition Photographs

XC211
Pre Works Site Photographs
Client:
larnród Éireann
Engineer:

2020

Jacob's

Pre Works Site Photographs

larnród Éireann

Engineer:

Jacob's

ate: 2020

XC211 Pre Works Site Photographs

larnród Éireann

Engineer:

Jacob's

ate: 2020

Post Works Site Photographs
Client:

larnród Éireann
Engineer:

Jacob's

XC211

Post Works Site Photographs

Client

larnród Éireann

Engineer

Jacob's

Date:

2020

XC211

Post Works Site Photographs

Client:

larnród Éireann

Engineer

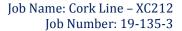
Jacob's

Date:

2020

Cork Line Level Crossings – XC212 Ground Investigation

Primary Author: Ian Holley


Client: Irish Rail

Client's Representative: JACOBS

Report Date: 25th November 2020

Report No.: OCB19-135-3

File Location: OCB19-135-3/Reporting/XC212

CONTENTS

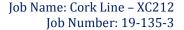
Document	Control	Sheet
----------	---------	-------

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY	1		
2	SCO	PE	1		
3	DESCRIPTION OF SITE				
4	SITE	E OPERATIONS	2		
-	4.1	Borehole by Combined Cable Percussion and Rotary Follow-On Drilling			
	4.2	Standpipe Installations	3		
	4.3	Standpipe Installations	3		
	4.4	Surveying	4		
5	LAB	ORATORY WORK	4		
	5.1	Geotechnical Laboratory Testing of Soils			
	5.2	Environmental Laboratory Testing of Soils	5		
6	GRO	UND CONDITIONS	5		
	6.1	General Geology of the Area	5		
	6.2	Ground Types Encountered During Investigation of the Site	5		
	6.3	Groundwater	5		
7	DISC	CUSSION	6		
	7.1	Proposed Construction	6		
8	REF	FRENCES	7		

APPENDICES

Appendix A Site and Exploratory Hole Location Plans


Appendix B Borehole Logs

Appendix C Water Purging Data & Logs

Appendix D Geotechnical Laboratory Test Results

Appendix E Environmental Laboratory Test Results

Appendix F Pre & Post Site Condition Photographs

Document Control Sheet

Report No.: OCB19-135-3

Project title: Cork Line Level Crossings – XC212

Client: Irish Rail

Client's Representative: JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft Factual	Ian Holley	Glen Byrne	Michael O'Connell	18 th November 2020
002	Final Factual	Ian Holley	Glen Byrne	Michael O'Connell	25 th November 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design - Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

Abbreviations use	d on exploratory hole logs		
U	Nominal 100mm diameter undisturbed open tube sample		
P	Nominal 100mm diameter undisturbed piston sample		
В	Bulk disturbed sample		
D	Small disturbed sample		
W	Water sample		
ES / EW	Soil sample for environmental testing / Water sample for environmental testing		
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)		
SPT (C)	Standard penetration test using 60-degree solid cone		
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.		
	The length achieved is stated (mm) for any test increment less than 75mm		
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)		
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)		
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength		
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift		
Abbreviations rela	nting to rock core – reference Clause 44.4.4 of BS 5930: 1999		
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.		
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.		
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.		
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.		
NI	Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.		
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.		
	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.		

Cork Line Level Crossings - XC212

1 AUTHORITY

On the instructions of JACOBS on behalf of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

This report details the work carried out both on site at XC212 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the in-situ and laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail and JACOBS in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included a borehole, installation of a standpipe, water purging, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC212 is located in Ballycoskery townland, Ballyhea, 0.25km east of the N20 road along L1533 local road, at grid reference ITM 554645.45, 617660.28. The level crossing is currently manned with a cabin located on the east side of the crossing and north of the L1533 road. An abandoned two-storey house, with an associated concrete-surfaced parking area and shed to the east, is located on the east side of the crossing along the south side of the L1533 road. Beechwood housing estate and Ballyhea Primary School are located north of the L1533 road on the west and east of the railway crossing, respectively.

The location of the proposed over-bridge is immediately to the south of the existing road, L1533, crossing agricultural fields. Access to the location of the proposed overbridge to the east of the railway is through a field gate opposite Ballyhea Primary School and the rear garden of the derelict house. Dense vegetation surrounds this marshy area. To the west of the railway, access is gained through a gate off the N20 road and crossing a number of fields and a stream to access the area south of the L1533 road. Dense hedgerows surround the fields in the vicinity of the proposed overbridge. A watercourse to the west of the rail line contains plant assemblage of conservation interest.

Ground surface in the site vicinity has an overall slope to the west from the lower slopes of the Ballyhoura Mountains towards a lake at Ballynadrideen townland to the west. However, the railroad runs along an embankment in this area and the L1533 local road rises from the west and east towards the railway crossing. Borehole XC212-CPRC01 was located on the south side of the derelict house, east of the railway crossing and south of L1533 road, where ground surface elevation is approximately 2m above that at the marshy agricultural land immediately to the south.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 2nd February 2020 and 28th June 2020, included:

- One (1) Cable Percussion with Rotary follow-on Borehole
- A Standpipe Installation in one (1) Borehole
- Water Purging in one (1) location

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Borehole by Combined Cable Percussion and Rotary Follow-On Drilling

One borehole (CPRC01) was put down on the south side of the derelict house to the east of the railway crossing by a combination of cable percussion boring and rotary follow-on open hole drilling techniques. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion upon reaching scheduled depth of 20.0m bgl.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals throughout the overburden using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

No rock core recovered.

Appendix B presents the borehole logs.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in CPRC01 borehole.

Details of the installation, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole log.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on six occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Water Purging

Prior to sampling from the standpipe water purging was carried out.

Appendix C presents the water purging data log.

4.4 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in Appendix F.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests, particle size distribution analysis and a 300m large shear box test.
- **soil chemistry:** pH, organic matter, Chloride content, Sulphur content and water-soluble and total sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix D.

5.2 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix E.

6 GROUND CONDITIONS

6.1 General Geology of the Area

Teagasc soil mapping indicates that the site area is underlain by Glacial Till derived chiefly from Devonian sandstones.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Carboniferous-age Ballysteen Formation, composed of Dark muddy Limestone and shale.

The site is underlain by a locally important aquifer, consisting of bedrock which is moderately productive only in local zones, and has a moderate groundwater vulnerability. No known karst features identified in the immediate site area but within the Ballysteen formation in the region a couple of karst features are noted. The closest of these is a spring approximately 1.75km to the North of the site.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Made Ground (fill / reworked material): Generally sandy gravelly Silt/Clay with angular cobbles and traces of inorganic material such as cloth, glass, stoneware and bricks. Extends to 3.50m bgl in CPRC01.
- Glacial Till: Sandy gravelly silty clay, frequently with cobble and boulder content, very soft to firm in upper horizons, becoming stiff with increasing depth.
- Fluvioglacial deposits: Typically medium dense to dense silty sandy Gravel with cobble content.
- Bedrock: Rockhead was not encountered to a maximum depth of 20.00m in CPRC01.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole log.

Job Name: Cork Line – XC212 Job Number: 19-135-3

Groundwater monitoring to date in the standpipe installation, yielded the following results:

Date	Depth to standing water level (m)
Date	CPRC01
13/08/20	3.65
17/08/20	3.70
21/08/20	3.13
29/09/20	3.67
07/10/20	3.40
22/10/20	3.76

Continued monitoring of the installed standpipe will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

November 2020 Page 6

Job Name: Cork Line – XC212 Job Number: 19-135-3

8 REFERENCES

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. Eurocode 7 - Geotechnical design - Part 1 General Rules. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. Code of practice for ground investigations. British Standards Institution, London.

BS EN ISO 14688-1: 2002. *Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description.* British Standards Institution, London.

BS EN ISO 14689-1: 2003. *Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description*. British Standards Institution, London.

Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

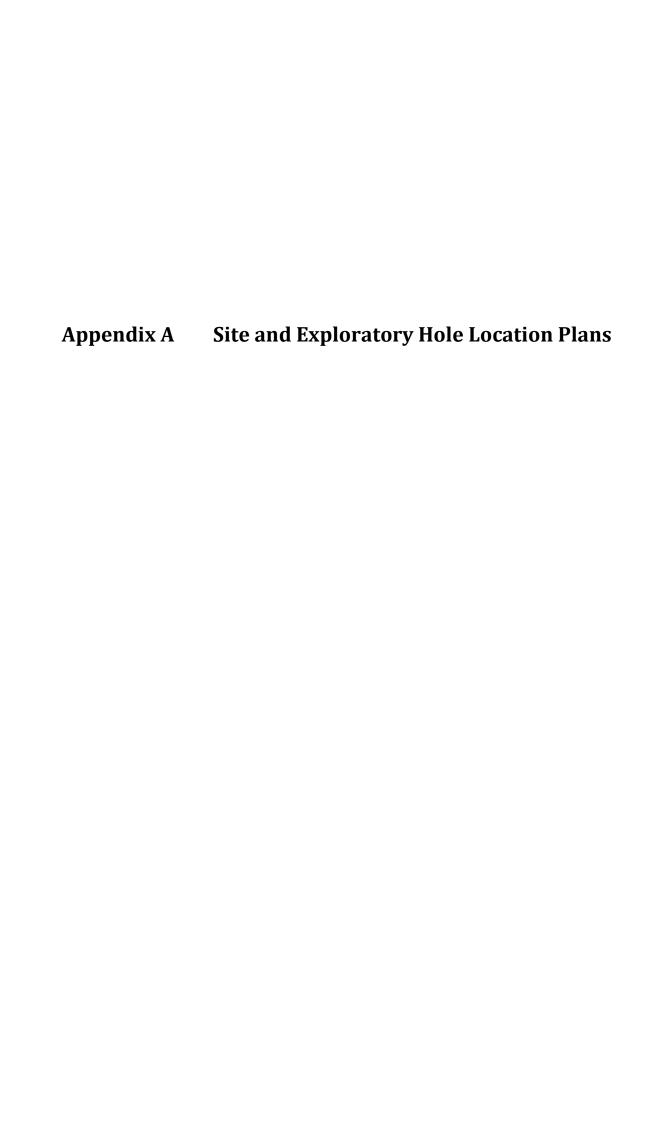
Building Research Establishment, 2007. BRE Digest 365: Soakaways.

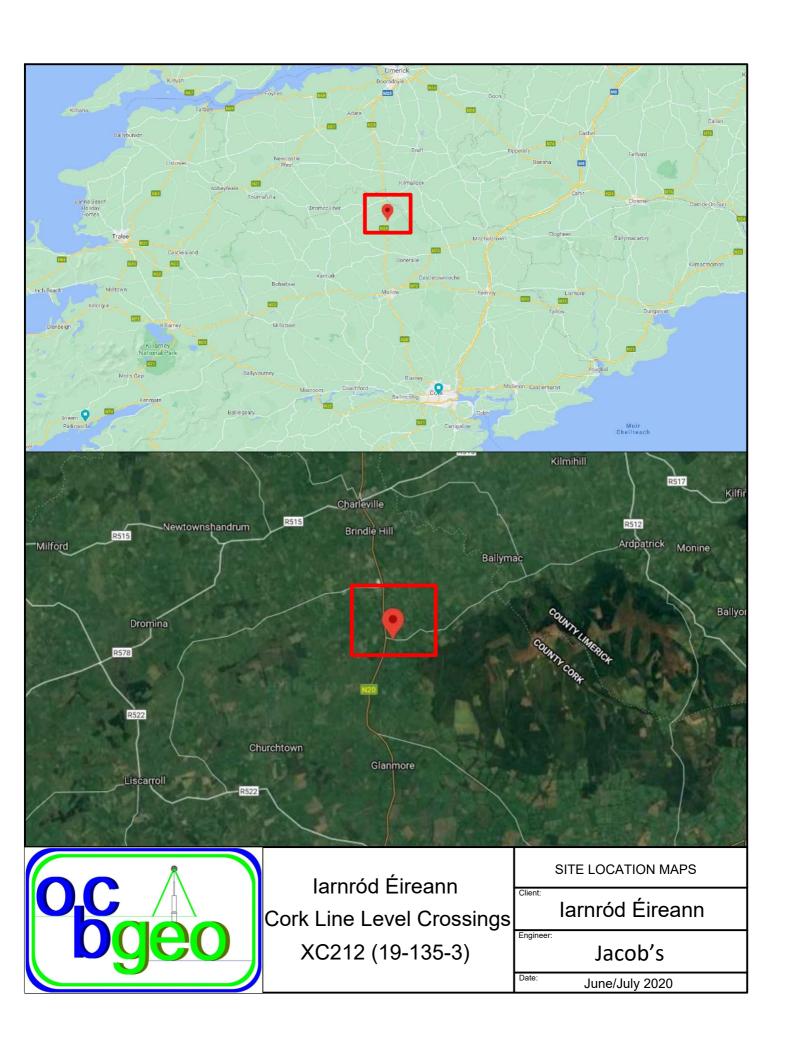
BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

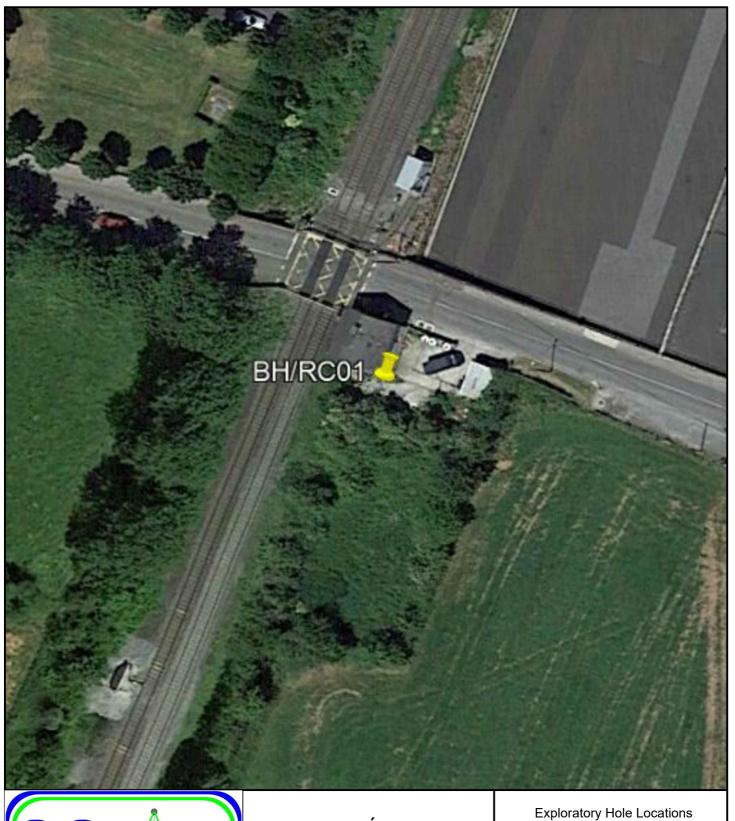
Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017.

http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/

Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015


https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA Waste Classification 2015 Web. pdf


Environment Agency UK (2009). Soil Guideline Values (SGVs).


https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/

November 2020 Page 7

Iarnród Éireann Cork Line Level Crossings XC212 (19-135-3)

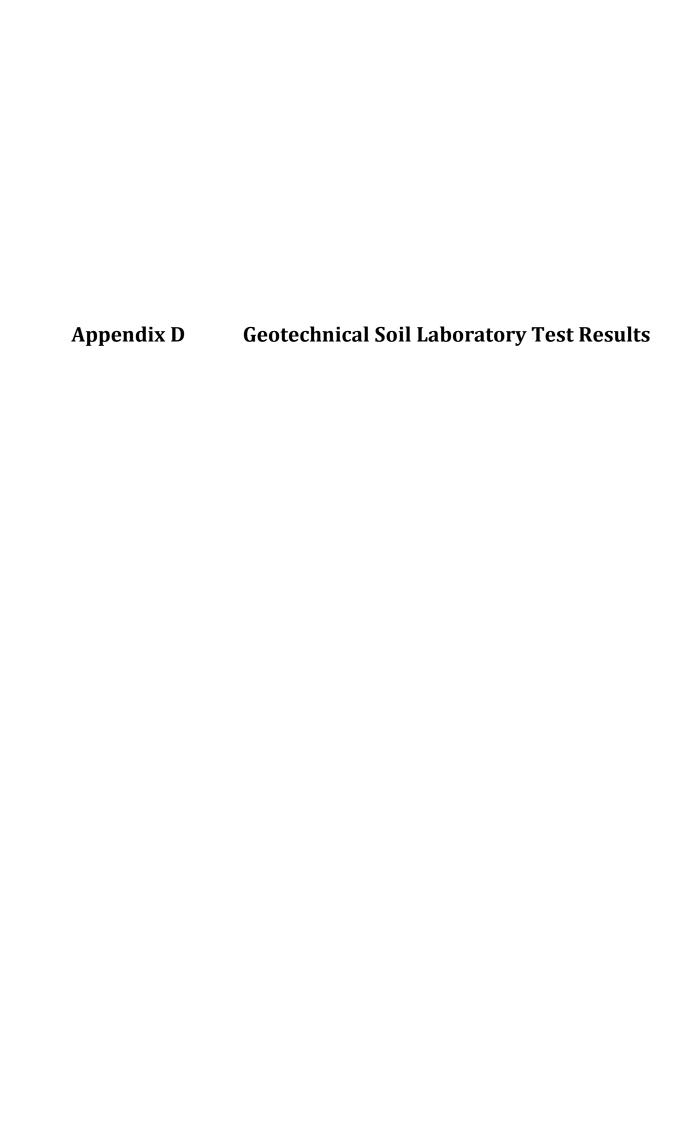
Client:

Iarnród Éireann

Engineer

Jacob's

June/July 2020


		Λ			Project		_	t Name:				No
C		/ \			19-135		Cork Li	ine Level Crossings	XC	212	-CP	RC
	bg	20			Coordi	nates:	Client:			hee	† 1	of
	-3			<u>/</u>	55465	3.01 E	larnró	d Éireann / Irish Rail			ι Т	JI.
Method:						Client's Representative:		Client's Representative:		Scale: 1:5		:50
Cable Percuss	sion+Rota	ry Op	oen		61764	2.69 N	JACOB	S	-		D	S+,
Plant:		-			Ground	d Level:	Dates:		Dr	iller	•	<u>NC</u>
Pilcon+T44						1 mOD	02/03/2020 - 28/06/2020		Logger: MN			
Depth	Sample /	Casing Depth	Water Depth	Field December	Level	Depth (m)			ře	D	1.6:11	Т
(m)	Tests	(m)	Depth (m)	Field Records	(mOD)	(Thickness)	Legend	·	Water	Bac	kfill	1
0.05	ES1					(0.50)		MADE GROUND: Dark brown fill material.				
						(0.50)						
0.50	ES4				97.31	0.50		MADE GROUND: Brown, light brown and occasional grey slightly sandy to	1			0
).50 - 1.50).50 - 1.50	B2 D3							sandy gravelly silty CLAY with low to medium cobble content and				
00	ES5					(1.00)		occasional vegetation fragments, moist. Sand is fine to coarse. Gravel is				1
1.20 - 1.65	SPT (C)			N=7 (1,1/1,2,2,2)		(1.00)		fine to coarse, angular to subangular.				. 1
1.20 - 1.03	N=7			N-7 (1,1/1,2,2,2)								
1.50 - 2.50	В6				96.31	1.50		MADE CROLIND: Soft to firm light brown candy gravally silty CLAY with	-			1
1.50 - 2.50	D7					Ē		MADE GROUND: Soft to firm light brown sandy gravelly silty CLAY with medium cobble content, moist. Sand is fine to coarse. Gravel is fine to				
						,		coarse, angular to subrounded. Cobbles are predominantly subangular				
2.00 - 2.45	SPT (C) N=12			N=12 (1,2/2,3,4,3)		(1.00)		limestone.				2
	14-17					Ė				::		
2.50 - 3.00	B8				95.31	2.50						2
2.50 - 3.00	D9				33.31	(0.30)		MADE GROUND / DISTURBED NATIVE MATERIAL: Soft olive grey to				
					95.01	2.80		brownish grey slightly sandy slightly gravelly silty CLAY with low cobble content including one concrete block and occasional black organic				
3.00	ES12				94.81	(0.20) 3.00		material, moist. One cloth fragment. Organic odour. Sand is fine to coarse.	/			3
3.00 - 3.30	B10					(0.50)		Gravel is fine to coarse, angular to subrounded.	//	:::		
3.00 - 3.30 3.30 - 3.50	D11 B13				04.51			As above, Dark olive grey with a trace of glass, slate and glazed stoneware	1			
3.30 - 3.50 3.30 - 3.50	D14				94.31	3.50	**************************************	ragments. Possible MADE GROUND / DISTURBED NATIVE MATERIAL: Soft olive grey to		Ů		. 3
		3.50	3.30	02-03-2020		(0.50)	ν	brownish grey slightly sandy slightly gravelly silty CLAY, moist. Organic	/			
3.60 - 4.00	B15				93.81	4.00	×-0	odour. Trace of possible red brick fragment, one possible mortar fragment.	Ш			. 4
3.60 - 4.00 3.60 - 4.05	D16 SPT (C)			0 (0 for 450mm/0	33.01	4.00	× × 0	Sand is fine to coarse. Gravel is fine to coarse, angular to subangular.				
5.00 4.03	351 (C)			for 0mm)		-	*	U4 sample attempted at 3.0 to 3.5m. 0% recovery. Very soft yellowish brown slightly sandy gravelly silty CLAY with low cobble		. :		
		3.50	2.60	03-03-2020		(1.00)		content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to	/			. 4
4.00 - 5.00	B17					F	×	subangular. Cobbles are angular to subangular including much limestone.		• .•		
4.00 - 5.00 4.00 - 4.45	D18 SPT (C)			N=14 (3,2/2,4,4,4)	65 -		<u> </u>	Firm yellowish brown slightly sandy gravelly silty CLAY with medium cobble content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to				
00 - 4.43	N=14			14-14 (3,2/2,4,4,4)	92.81	5.00	× × ·	subangular. Cobbles are mostly subangular, predominantly limestone.	4			5
5.00 - 6.00	B19					Ė	* × × •	Stiff yellowish brown slightly sandy gravelly silty CLAY with medium cobble				
5.00 - 6.00	D20					(1.00)	\$\frac{1}{2} \frac{1}{2} \frac	content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to		$ \cdot $. 5
5.00 - 5.45	SPT (C)			N=25 (1,2/3,6,8,8)		(1.00)	ρ- <u>0</u>	subangular. Cobbles are mostly subangular, predominantly limestone.				. [
	N=25					Ė	× × 0	1 2		::.		
6.00 - 7.00	B21				91.81	6.00	× × ×	Stiff greyish brown slightly sandy gravelly silty CLAY with medium cobble	\parallel			6.
6.00 - 7.00	D22			N. 26 /4 : /= 6 = -1		<u> </u>	× × .	content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to		Ů		
6.00 - 6.45	SPT (C) N=26			N=26 (1,1/5,6,7,8)		<u> </u>	×	subangular. Cobbles are mostly subangular, predominantly limestone.				
	11-20					(1.00)	X	2			[: •	6
						Ė	××× 0	2				
7.00 - 7.15	B23				90.81	7.00	* <u>\^\\</u> \.	4	$\parallel \parallel$	· : :		7
7.00 - 7.15	D24					(0.30)	× × 0	Firm greyish brown slightly sandy gravelly silty CLAY with medium cobble		· · ·		
7.00 - 7.45	SPT (C)			N=12 (0,1/2,2,4,4)	90.51	7.30	0 - 0 - 0	content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are mostly subangular, predominantly limestone.	Æ			
7.30 - 8.00	N=12 B25					Ė	X X	Greyish brown slightly silty very sandy GRAVEL with low cobble content,			- 1000	7
7.30 - 8.00 7.30 - 8.00	D26					(0.70)	a×. ° a×.	wet. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded.			<u> </u>	
	-			(Water strike at	00.01	0.00	• * * • • • * *	Cobbles are angular to subrounded, sandstone, siltstone, limestone, conglomerate and occasional quartz.		ŀ∴ F		1.
				7.3m. Water rose to	89.81	8.00	'a X ' b a X '	Medium Dense greyish brown slightly silty very sandy GRAVEL with	1 🖺	l:°‡	‡	. 8
				3.5m in 2 mins. Gravel blowback to			, , X . 0	medium cobble content, wet. Sand is fine to coarse. Gravel is fine to			-	
				6.4m.)		(0.80)	× × ×	coarse, angular to subrounded. Cobbles are mostly sandstone and			[::	8
8.00 - 8.80	B27					Ė	α Χ: , αΧ.	limestone.			<u> </u>	
8.00 - 8.80	D28			N 42 /0 - /2 =	89.01	8.80	a X	Dense greyish brown slightly silty very sandy GRAVEL with medium cobble	1	l: F	7	
8.00 - 8.45	SPT (C) N=12	8 00	3 10	N=12 (0,1/2,2,4,4) 04-03-2020			a X , a X ,	content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to		∷°È	‡	. 9
	1,1-12			03-03-2020		(0.70)		subrounded. Cobbles are mostly sandstone and limestone.		:: -	- ``.	
3.80 - 9.00	B29				Q0 24	0.50	*a×**a×]. ·	
8.80 - 9.00	D30				88.31	9.50	0.0	Open Hole Boring - Driller Described:			Ŧ.:	9
9.00 - 9.40 9.00 - 9.40	B31 D32						0.0	Sandy GRAVEL with boulders.		l:‡]	
9.00 - 9.40 9.00 - 9.45	SPT (C)			N=47		-	0.0	;		. }	<u> </u>	10
	N=47			(15,18/9,14,12,12)		_				ŀ⊹F	. °.	
							10°	Continued on Next Page	+	·: E	ા	+
Remarks	1	1				<u> </u>		Water Added Water				_
									.10	2		3
								2.50 2 8.00 8	.50 .00	20 20		6
										Detail		_
								To (m) Diam (mm) From (m) 9.40 200 7.10 20.00 151 8.80	7.30 9.00			(hl
able Percussion								dolo techniques employed to 20.00m 20.00 151 8.80				

		•			Project	t No.:	Projec	t Name:	Вс	orehole	No.:
).C	Λ		1	19-135	i	Cork Li	ne Level Crossings	x	C212-C	PRC01
	ba	e			Coordi	nates:	Client:		Τ,	Sheet 2	of 2
	- 9				55465	3.01 E	larnród	d Éireann / Irish Rail	F		
Method:					61764	2.69 N		s Representative:	Sc	ale:	
Cable Percus	sion+Rota	ary O	pen				JACOB:		Driller: DS+A/ +NOB		DS+AA
Plant: Pilcon+T44						d Level: 1 mOD	Dates:	02/03/2020 - 28/06/2020	ıc	gger:	
Depth	Sample	/ Casing	g Water		Level	Depth (m)	_		_		
(m) 9.40 - 9.52	Tests	Depth (m)	Water Depth (m)	Field Records 50 (50 for	(mOD)	(Thickness)	Legend	Description	Water	Backfi	.11
10.00 - 10.45	SPT (C) SPT (C) N=41	9.40	2.90	125mm/50 for 0mm) 04-03-2020 N=41 (3,7/12,12,8,9)		(3.00)					11.5
13.00 - 13.45	SPT (C) N=47			N=47 (3,7/13,14,9,11)	85.31	12.50		Open Hole Boring - Driller Described: Boulder CLAY			12.5
					83.81	- 14.00 14.00		Open Hole Boring - Driller Described: Sandy BOULDERS			14.0
					82.31	15.50		Open Hole Boring - Driller Described: Clayey SAND with boulders			15.0 —
16.00 - 16.45	SPT (C) N=49			N=49 (2,5/8,12,13,16)		(3.00)					16.0 —
											17.5 -
19.00 - 19.45	SPT (C) N=56			N=56 (3,4/9,13,15,19)	79.31	(1.50)		Open Hole Boring - Driller Described: Clayey SAND			18.5 -
20.00 - 20.45	SPT (C) N=52			N=52 (6,8/9,10,15,18)	77.81	20.00		End of borehole at 20.000m			20.0 —
									1	ِّـــ	\perp
Remarks								From (m) To (m) Struck at (m) Casi	ng to (m	e - General	Rose to (m
								7.30 2.50	7.10 2.50 8.00	2 20 20	3.50 2.30 6.60
								Casing Details Ch	iselling	g Details	
								To (m) Diam (mm) From (m) 9.40 200 7.10	To (10	ne (hh:mm 00:30
Cable Percussion	n terminate	d at 9	.437n	n due to probable boul	der obstr	uction. Rotar	y Open H	ole techniques employed to 20.00m. 20.00 151 8.80 9.40	9.0 9.4	4	00:30 01:00

Appendix C

Water Purging Data & Log

	I.E - Cork Line 19-135		r	n (m) r (m) r2 FWV (m3)	0.050 0.0025502 0.04005932
BH ID:	XC212-CPRC01		Theoretical Well Volume	40.06 li	rs
Depth to Response Zone:	Top (mbgl)	Bottom (mbgl)	TWV x3	120.18 /	rrs
	7.5	12.5			
Purge Start Time:	09:30			(mbgl)	
Purge Finish Time:	12:01		Depth to Water	4.05	
			Total Depth	6.85	
Depth to water after purging:		mbgl			
	Time Taken to fill 20ltr container(mins)	Flow Rate I/min		Date _	06/08/202
Reading 1:	11		(Pumping in well column)		
Reading 2:	20	~0.7			
Reading 3:	23	~0.9			
Nr of Containers filled:		5.5]		
Total Volume Purged:		110	litres		
· ·	!		1		
	Temperature	ρН	Electrical Conductivity	Dissolved Oxygen	Redox Potential
Reading 1	16.37	6.28	12	0.6	28
Reading 2	15.77	6.28	12	0.62	
Reading 3	15.75	6.63	10.71	0.62	26
Reading 4	14.62	6.43	9.06	0.63	25
Reading 5	13.93	6.55	11.53	0.64	24
Reading 6	13.23	6.58	11.39	0.64	24
Reading 7	13.41	6.65	10.13	0.63	24
Reading 8	13.26	6.57	10.18	0.63	25
Reading 9	13.3	6.54	11.16	0.63	26
ricuanig 5					

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93839
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	09/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC212-CPRC01 Type D Sample 7

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 1.5-2.5m Sampling Reason: Request

Parameter	RESULT
рН	8.4
Sulphate Aqueous Extract (SO4) (mg/l)	2.9
Sulphur as S, Total (%)	0.03
Sulphate as SO4, Total (%)	0.03

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

J-2-8

Approved Signature
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93841 Unit 1 Carrigogna **Date Received:** 26/03/2020 Midleton **Date Tested:** 31/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC212-CPRC01 Type D Sample 9

Sample Type: Bulk Location: XC212-CPRC01 Type D Sample 9

Date Sampled: Client Info Sample by: Client

Depth: 2.5-3.0m **Material Type:** Soil

Moisture Content (%): 19

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 057 8664885

LABORATORY TEST REPORT

To determine the Organic Content of Soil in accordance with BS 1377

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93843
	Unit 1 Carrigogna	Date Received:	26/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC212-CPRC01 Type D Sample 9

Supplier: Client Info Date of Sampling: Client Info

Source: Client Info Sampled By: Client

Sample Location: 2.5-3.0m Sampling Reason: Request

Result:

Organic Matter (%) 5.4

Comments:

None

Tested in accordance with the above specifications
Subcontracted to a laboratory UKAS accredited for this testing

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

James Ward, Operations Manager

Tel: 01925286880

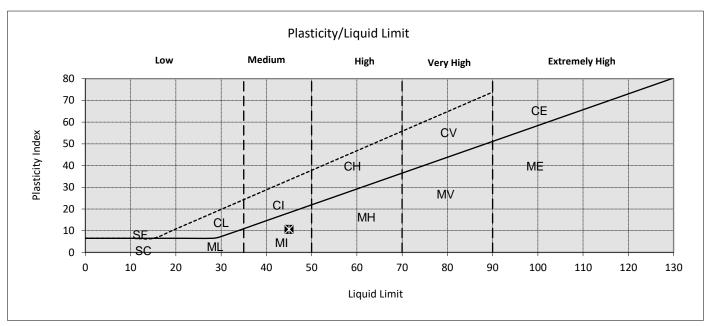
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93842

Unit 1 Carrigogna Sample Ref.: XC212-CPRC01 2.5-3.0m Type D S.9


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 26/03/2020

 2003-104
 Date Tested:
 03/04/2020

 Ian Holley
 Date Reported:
 03/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	23	
Natural Moisture Content (%)	38	
Liquid Limit (single point)(%)	45	
Plastic Limit (%)	34	
Plasticity Index	11	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

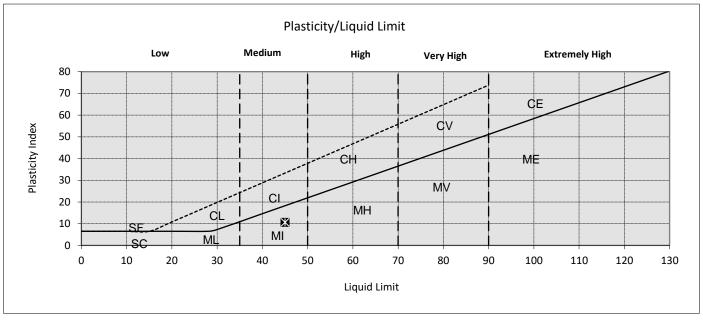
Approved Signature

James Fisher Testing Services Ltd Phil Thorp, Laboratory Manager

Tel: 01925286880

Order No:

Originator:


LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93842

Unit 1 Carrigogna Sample Ref.: XC212-CPRC01 2.5-3.0m Type D S.9

MidletonDate Sampled:Client InfoCo CorkDate Received:26/03/20202003-104Date Tested:03/04/2020Ian HolleyDate Reported:03/04/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed **MATERIAL** Soil Retained 425 micron (%) 23 Natural Moisture Content (%) 38 Liquid Limit (single point)(%) 45 Plastic Limit (%) 34 Plasticity Index 11

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93840

Originator: Ian Holley Visual Description Cobble, Dark Clay, Sandy

Client Ref. XC212-CPRC01 Type B Sample 8

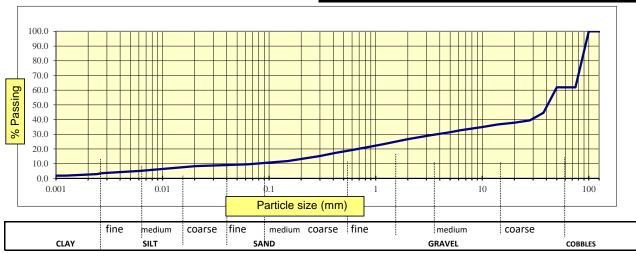
Location: XC212-CPRC01 Type B Sample 8

Supplier: Bulk

Order No:

Source: Client Info.

Depth (m): 2.5-3.0m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	62	
63 mm	62	
50 mm	62	
37.5 mm	45	
28 mm	39	
20 mm	38	
14 mm	37	
10 mm	35	
6.3 mm	33	
5 mm	31	
3.35 mm	29	
2 mm	27	
1.18 mm	23	
0.6 mm	19	
0.425 mm	17	
0.3 mm	15	
0.15 mm	12	
0.063 mm	10	
0.020 mm	8	
0.006 mm	5	
0.003 mm	4	
0.002 mm	3	
0.001 mm	2	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature
JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93844
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	09/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC212-CPRC01 Type D Sample 14

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 3.3-3.5m Sampling Reason: Request

Parameter	RESULT
рН	8
Sulphate Aqueous Extract (SO4) (mg/l)	46
Sulphur as S, Total (%)	0.03
Sulphate as SO4, Total (%)	0.03

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: Cork Line Level Crossings Job No.: 19-135 **Client: OCB** Geotechnical Lab Ref No.: ST 93845 Unit 1 Carrigogna **Date Received:** 26/03/2020 Midleton **Date Tested:** 31/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC212-CPRC01 Type D Sample 15

Sample Type: Bulk Location: XC212-CPRC01 Type D Sample 15

Date Sampled: Client Info Sample by: Client

Depth: 3.6-4.0m **Material Type:** Soil

Moisture Content (%): 7.4

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

0-2-8

Approved Signature

James Fisher Testing Services (Ireland) Ltd

James Ward, Operations Manager

Page 1 of 1

Tel: 057 8664885

LABORATORY TEST REPORT

To determine the Organic Content of Soil in accordance with BS 1377

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93847
	Unit 1 Carrigogna	Date Received:	26/03/2020
	Midleton	Date Reported:	08/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC212-CPRC01 Type D Sample 16

Supplier: Client Info Date of Sampling: Client Info

Source: Client Info Sampled By: Client

Sample Location: 3.6-4.0m Sampling Reason: Request

Result:

Organic Matter (%) 0.9

Comments:

None

Tested in accordance with the above specifications
Subcontracted to a laboratory UKAS accredited for this testing

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

James Ward, Operations Manager

Tel: 01925286880

Order No:

Originator:

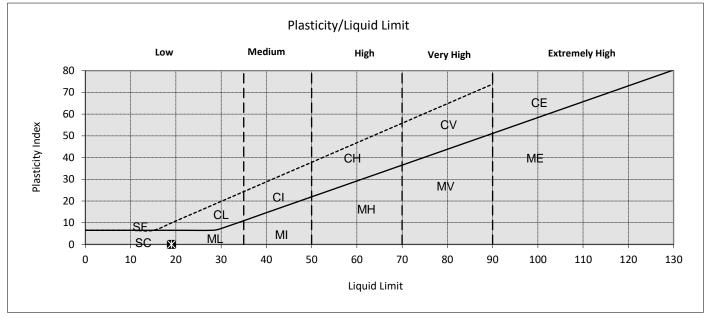
Plasticity Index

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 Cl 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93846

Unit 1 Carrigogna Sample Ref.: XC212-CPRC01 3.6-4.0m Type B S.15

N/A


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 26/03/2020

 2003-104
 Date Tested:
 02/04/2020

 Ian Holley
 Date Reported:
 03/04/2020

Sampling Certificate No Sampled By Client Sample Type **Bulk** Sample Preparation Method Washed **MATERIAL** Soil Retained 425 micron (%) 66 Natural Moisture Content (%) 13 Liquid Limit (single point)(%) 19 Plastic Limit (%) **Non-Plastic**

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

2-2-

Approved Signature
James Fisher Testing Services Ltd
Phil Thorp, Laboratory Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93849 Unit 1 Carrigogna **Date Received:** 26/03/2020 Midleton **Date Tested:** 31/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC212-CPRC01 Type D Sample 18

Sample Type: Bulk Location: XC212-CPRC01 Type D Sample 18

Date Sampled: Client Info Sample by: Client

Depth: 4-5m **Material Type:** Soil

Moisture Content (%): 8

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 01925286880

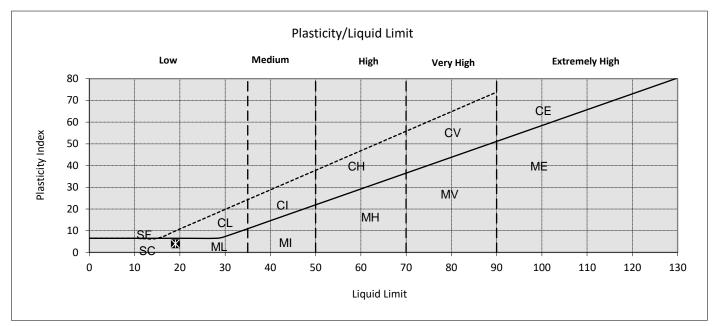
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93850

Unit 1 Carrigogna Sample Ref.: XC212-CPRC01 4-5m Type D Sample 18


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 26/03/2020

 2003-104
 Date Tested:
 02/04/2020

 Ian Holley
 Date Reported:
 03/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	19	
Natural Moisture Content (%)	13	
Liquid Limit (single point)(%)	19	
Plastic Limit (%)	15	
Plasticity Index	4	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB GeotechnicalLab Ref No.:ST 93848

Unit 1 Carrigogna

Date Received: 11/03/2020

Midleton

Date Reported: 02/04/2020

Date Tested: 01/04/2020

Order No: 2003-104 Material: Soil

Originator: Ian Holley Visual Description Large Cobble, Light Clay, Sandy

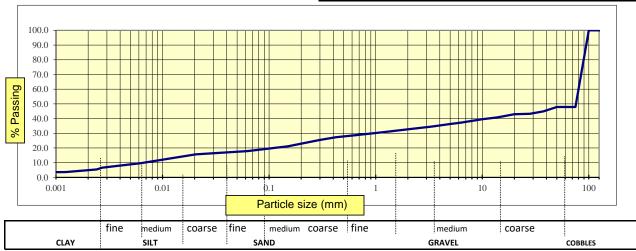
Client Ref. XC212-CPRC01 Type B Sample 17

Location: XC212-CPRC01 Type B Sample 17

Supplier: Bulk

Source: Client Info.

Depth (m): 4.0-5.0m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	48	
63 mm	48	
50 mm	48	
37.5 mm	45	
28 mm	43	
20 mm	43	
14 mm	41	
10 mm	40	
6.3 mm	37	
5 mm	36	
3.35 mm	35	
2 mm	33	
1.18 mm	31	
0.6 mm	28	
0.425 mm	27	
0.3 mm	26	
0.15 mm	21	
0.063 mm	18	
0.020 mm	16	
0.006 mm	10	
0.003 mm	7	
0.002 mm	5	
0.001 mm	4	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

Originator: Ian Holley

Tel: 057 86 64885

Laboratory Test Report

TII Series 600

Determination of shear Strength by Direct Shear (Small Shearbox) in accordance with BS :1377: Part 7 : 1990 Clause 4

Project: Cork Line Level Crossing Job No.: 19-135 Client: OCB Geotechnical Lab Ref. No.: ST 93851 Unit 1 Carrigogna Date Received: 09/03/2020 Midleton Date Reported: 05/05/2020 Material: Earthworks Order No.: 2003-104 **Visual Description:** Brown very Gravelly Clay

Specification:

Client Ref: ST 93851

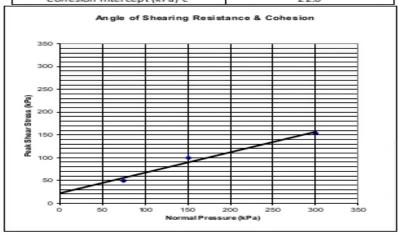
Certificate of sampling Yes Date Of Sampling: Client info

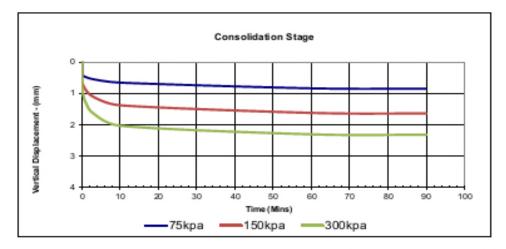
Lab Reference No. XC212-CPRC01 Sampled By: OCB

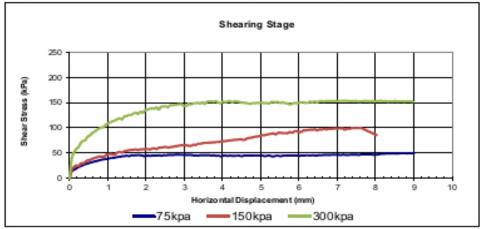
 Sample Source & Ticket No.
 Site Won
 Sample Preparation:
 Bulk sample sieved through 20mm sieve

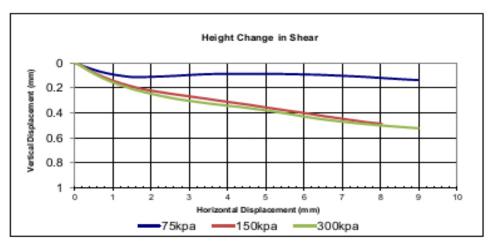
Sample Location / Orientation : Cork Line Level Crossings Tested Dry or Submerged: Dry

Results


SUMMARY OF TEST RESULTS:		
Angle of Shearing Resistance (°) φ'	24.0	
Cohesion Intercept (kPa) c'	22.0	


Sample Condition: Submerged


Particle Density: 2.65{ Mg/m3} Assumed Sample Preparation: Remoulded { Hand Tamped}


Material tested passing 2mm sieve

Initial Condition				
		Stage		
	1	2	3	
Normal Pressure (kPa)	75	150	300	
Height (mm)	20.39	20.20	20.37	
Width (mm)	59.9	59.9	59.9	
Bulk Density (Mg/m ³)	2.07	2.09	2.07	
Dry Density (Mg/m³)	1.80	1.82	1.80	
Moisture Content (%)	15	15	15	
Voids Ratio	0.469	0.457	0.475	
Degree of Saturation	84.8	87.0	83.7	
Shearing St	age			
Rate of Displacement (mm/min)	0.03	0.03	0.03	
Peak Shear Stress (kPa)	49.4	99.6	153.5	
Displacement at Peak Stress (mm)	8.9	7.6	8.1	
Final Condition				
Bulk Density (Mg/m³)	2.28	2.40	2.42	
Dry Density (Mg/m³)	1.90	2.03	2.09	
Moisture Content (%)	20	18	16	
Angle of Shearing Resistance (°) φ'	24.0			
Cohesion Intercept (kPa) c'	22.0			

Subcontracted to a Laboratory Accredited in this Testing

Approved Signature

James Fisher Testing Services Limited James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93852
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	09/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC212-CPRC01 Type D Sample 20

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 5-6m Sampling Reason: Request

Parameter	RESULT
рН	8.3
Sulphate Aqueous Extract (SO4) (mg/l)	15
Sulphur as S, Total (%)	0.01
Sulphate as SO4, Total (%)	0.01

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 057 86 64885

Laboratory Test Report Determination of shear Strength by Direct Shear (Small Shearbox) in accordance with BS:1377: Part 7: 1990 Clause 4

Project: Cork Line Level Crossing Job No.: 19-135 Client: OCB Geotechnical Lab Ref. No.: ST 93853 Unit 1 Carrigogna Date Received: 09/03/2020 Midleton Date Reported: 05/05/2020 Material: Earthworks Order No.: 2003-104 **Visual Description:** Brown very Gravelly, very Clayey SAND Originator: Ian Holley Specification: TII Series 600

Client Ref: ST 93853

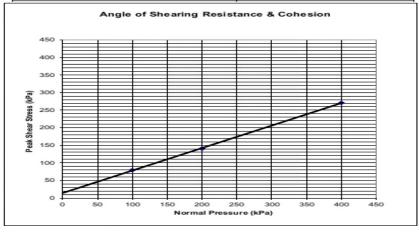
Certificate of sampling Yes Date Of Sampling: Client info

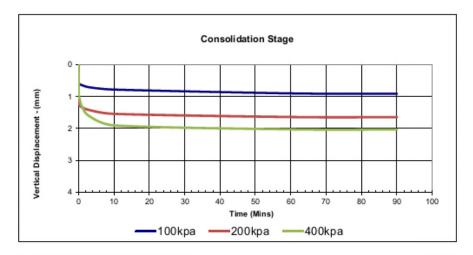
 Lab Reference No.
 XC212-CPRC01 6-7m Type B Ref 21
 Sampled By:
 OCB

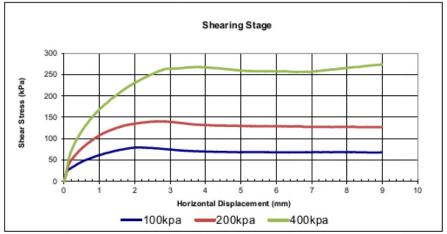
Sample Source & Ticket No. Site Won Sample Preparation: Bulk sample sieved through 20mm sieve

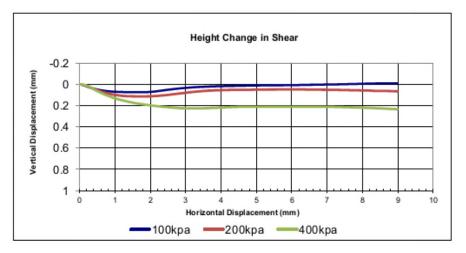
Sample Location / Orientation : Cork Line Level Crossings Tested Dry or Submerged: Dry

Results


SUMMARY OF TEST RESULTS:		
Angle of Shearing Resistance (°) φ'	32.5	
Cohesion Intercept (kPa) c'	14.0	


Sample Condition: Submerged


Particle Density: 2.65(Mg/m3) Assumed
Sample Preparation: Remoulded (Hand Tamped)


Material tested passing 2mm sieve

iviateriai testeu passing 2mm sieve				
Initial Condition				
	Stage			
	1	2	3	
Normal Pressure (kPa)	100	200	400	
Height (mm)	20.60	20.23	20.77	
Width (mm)	59.9	59.9	59.9	
Bulk Density (Mg/m ³)	2.24	2.26	2.21	
Dry Density (Mg/m³)	2.03	2.04	1.99	
Moisture Content (%)	10	11	11	
Voids Ratio	0.303	0.301	0.329	
Degree of Saturation	87.3	96.8	88.5	
Shearing S	tage			
Rate of Displacement (mm/min)	0.03	0.03	0.03	
Peak Shear Stress (kPa)	79.4	140.4	270.7	
Displacement at Peak Stress (mm)	2.0	2.7	9.0	
Final Condition				
Bulk Density (Mg/m³)	2.40	2.49	2.44	
Dry Density (Mg/m³)	2.13	2.23	2.24	
Moisture Content (%)	13	12	9	
Angle of Shearing Resistance (°) φ'		32.5		
Cohesion Intercept (kPa) c'	14.0			

Subcontracted to a Laboratory Accredited in this Testing

J-2-R

Approved Signature

James Fisher Testing Services Limited

James Ward, Operations Manager

Tel: 057 8664885

LABORATORY TEST REPORT

MOISTURE CONTENT BS 1377: Part 2: 1990 Oven Drying Method cl 3.2

Site: 19-135 Cork Line Level Crossings Job No.: **Client: OCB** Geotechnical Lab Ref No.: ST 93854 Unit 1 Carrigogna **Date Received:** 26/03/2020 Midleton **Date Tested:** 31/03/2020 **Order No:** 2003-104 **Date Reported:** 03/04/2020 Specification: **Originator:** Ian Holley Client

Sampled Ref: XC212-CPRC01 Type D Sample 22

Sample Type: Bulk Location: XC212-CPRC01 Type D Sample 22

Date Sampled: Client Info Sample by: Client

Depth: 6-7m **Material Type:** Soil

Moisture Content (%): 6.2

Tested in accordance with BS 1377: Part 2: 1990 Sample preparation by cone and quarter

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services (Ireland) Ltd James Ward, Operations Manager

Page 1 of 1

Tel: 01925286880

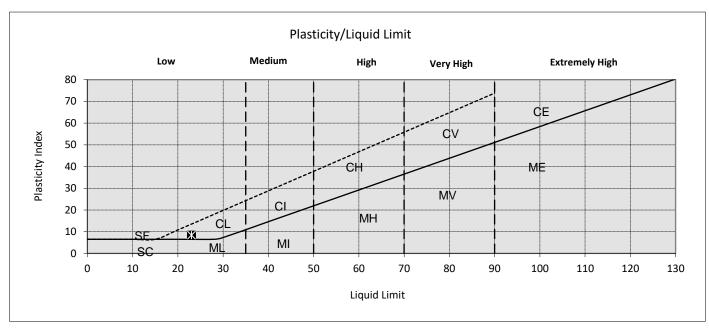
Order No:

Originator:

LABORATORY TEST REPORT LIQUID & PLASTIC LIMIT TESTS BS 1377: Part 2: 1990 CI 4.4,5.3

Site Ref.:Cork Line Level CrossingsJob No.:19-135Client:OCB GeotechnicalLab Ref No.:ST 93855

Unit 1 Carrigogna Sample Ref.: XC212-CPRC01 6-7m Type D Sample 22


 Midleton
 Date Sampled:
 Client Info

 Co Cork
 Date Received:
 26/03/2020

 2003-104
 Date Tested:
 02/04/2020

 Ian Holley
 Date Reported:
 03/04/2020

Sampling Certificate	No	
Sampled By	Client	
Sample Type	Bulk	
Sample Preparation Method	Washed	
MATERIAL	Soil	
Retained 425 micron (%)	20	
Natural Moisture Content (%)	13	
Liquid Limit (single point)(%)	23	
Plastic Limit (%)	14	
Plasticity Index	8	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature

James Fisher Testing Services Ltd

Phil Thorp, Laboratory Manager

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project: Cork Line Level Crossings Job No: 19-135
Client: OCB Geotechnical Lab Ref No.: ST 93857

Unit 1 Carrigogna

Date Received:

Date Reported:

02/04/2020

Date Tested:

01/04/2020

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionCobble, Sandy

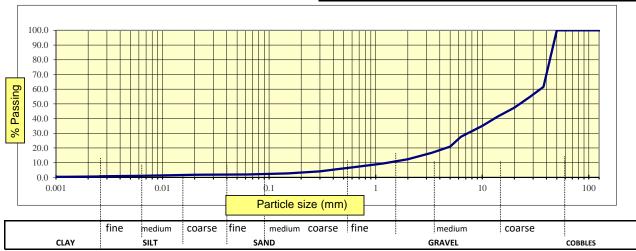
Client Ref. XC212-CPRC01 Type B Sample 25

Location: XC212-CPRC01 Type B Sample 25

Supplier: Bulk

Source: Client Info.

Depth (m): 7.3-8.0m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	62	
28 mm	55	
20 mm	47	
14 mm	41	
10 mm	35	
6.3 mm	28	
5 mm	21	
3.35 mm	17	
2 mm	12	
1.18 mm	9	
0.6 mm	7	
0.425 mm	5	
0.3 mm	4	
0.15 mm	3	
0.063 mm	2	
0.020 mm	2	
0.006 mm	1	
0.003 mm	1	
0.002 mm	1	
0.001 mm	0	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project: Cork Line Level Crossings Job No: 19-135
Client: OCB Geotechnical Lab Ref No.: ST 93857

Unit 1 Carrigogna

Date Received:

Date Reported:

02/04/2020

Date Tested:

01/04/2020

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionCobble, Sandy

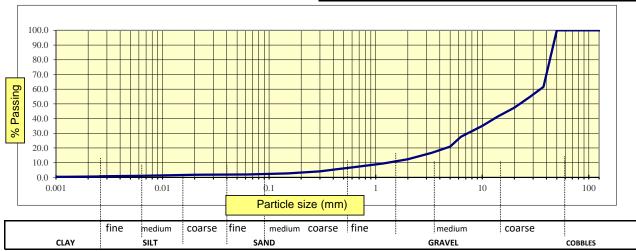
Client Ref. XC212-CPRC01 Type B Sample 25

Location: XC212-CPRC01 Type B Sample 25

Supplier: Bulk

Source: Client Info.

Depth (m): 7.3-8.0m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	62	
28 mm	55	
20 mm	47	
14 mm	41	
10 mm	35	
6.3 mm	28	
5 mm	21	
3.35 mm	17	
2 mm	12	
1.18 mm	9	
0.6 mm	7	
0.425 mm	5	
0.3 mm	4	
0.15 mm	3	
0.063 mm	2	
0.020 mm	2	
0.006 mm	1	
0.003 mm	1	
0.002 mm	1	
0.001 mm	0	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377 : Part 2 : 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377 : Part 2 : 1990 Cl. 9.5

Project:Cork Line Level CrossingsJob No:19-135Client:OCB Geotechnical
Unit 1 CarrigognaLab Ref No.:ST 93856Date Received:11/03/2020MidletonDate Reported:02/04/2020

 Date Reported:
 02/04/2020

 Date Tested:
 01/04/2020

 Material:
 Soil

Order No:2003-104Material:SoilOriginator:Ian HolleyVisual DescriptionLight Clay, Sandy

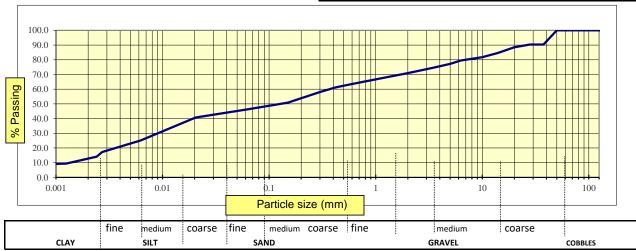
Client Ref. XC212-CPRC01 Type B Sample 23

Location: XC212-CPRC01 Type B Sample 23

Supplier: Bulk

Source: Client Info.

Depth (m): 7.0-7.15m


Sampling Reason: Client Request

Sampled By: Client
Specification: Client

Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

BS Sieve	%	Specification
Size	Passing	
300 mm	100	
125 mm	100	
100 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	90	
28 mm	90	
20 mm	89	
14 mm	85	
10 mm	82	
6.3 mm	79	
5 mm	77	
3.35 mm	74	
2 mm	71	
1.18 mm	68	
0.6 mm	64	
0.425 mm	61	
0.3 mm	58	
0.15 mm	51	
0.063 mm	46	
0.020 mm	41	
0.006 mm	25	
0.003 mm	17	
0.002 mm	14	
0.001 mm	9	

Tested in accordance with BS 1377: Part 2: 1990 Clause 9.2 and 9.5

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Sedimentation by Hydrometer - Not UKAS

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

Tel: 057 8664885

LABORATORY TEST REPORT

BRE Test Suite B - Greenfield Site

Project:	Cork Line Level Crossings	Job No.:	19-135
Client:	OCB Geotechnical	Lab Ref. No.:	ST 93860
	Unit 1 Carrigogna	Date Received:	09/03/2020
	Midleton	Date Reported:	09/04/2020
	Co. Cork	Material:	Soil
Order No.:	2003-104	Date Tested:	07/04/2020
Originator:	Ian Holley	Specification:	Client

Sample Details XC212-CPRC01 Type D Sample 30

Supplier: Client Info Date of Sampling: Client Info.

Source: Client Info Sampled By: Client

Sample Location: 8.8-9.0m Sampling Reason: Request

Parameter	RESULT	
рН	8.3	
Sulphate Aqueous Extract (SO4) (mg/l)	20	
Sulphur as S, Total (%)	0.02	
Sulphate as SO4, Total (%)	0.03	

Comments:

None

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Tested in accordance with the above specifications

Subcontracted to a laboratory UKAS accredited for this testing

Approved Signature

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Tel: 01925 286 880

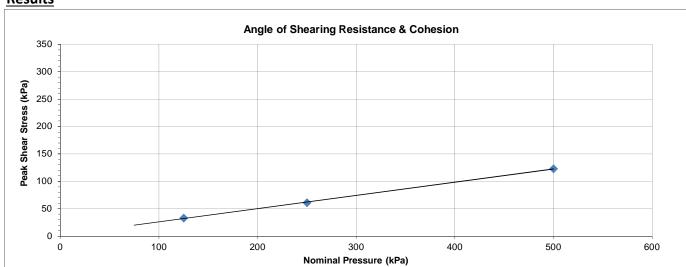
James Fisher Testing Services

Laboratory Test Report

To determine the Effective Angle of Internal Friction & Effective Cohesion by Dry Direct Shear of a sample, according to SHW Clause 636 March 2000 & BS :1377: Part 7 : 1990 Clause 5

Project: Cork Line Level Crossings Job No.: 19-135 Client: OCB Geotechnical Lab Ref. No.: ST 93859 Date Received: 26/03/2020 Unit 1 Carrigogna Midleton Date Reported: 09/04/2020 Co Cork Material: Earthworks Order No.: 2003-104 **Visual Description:** Sand & Coarse Gravel Originator: Ian Holley Specification: TII Series 600

Client Ref: ST 93859


Certificate of sampling No Date Of Sampling: Client Info

Lab Reference No. XC212-CRPC01 8-8.8m Type D
Sample 28 Sampled By: Client

Sample Source & Ticket No. Client Info Sample Preparation: Bulk sample sieved through 20mm sieve

Sample Location / Orientation : Cork Line Level Crossings Tested Dry or Submerged: Dry

Results

Test Specimen Size (mm)	305x305x150		
Maximum Dry Density (Mg/m³)	1.990		
Optimum Moisture Content (%)	11.0		
Particle Density Used (Mg/m³)	2.60		
PD indicating measured or assumed	Assumed		
Initial Bulk Density (Mg/m³)	2.142	2.143	2.146
Moisture Content (%)	14.0	14.2	14.2
Initial Dry Density (Mg/m ³⁾	1.879	1.877	1.879
Indicating which direct shear procedure was used, 5.5.4 single stage or 5.5.5 multi-reversal test	Single Stage Test		
Normal Pressure (kPa)	125	250	500
Peak Shear Strength (kPa)	33	61	123
Cohesion (kPa) to 0.1	2.0		
Angle of friction (°) to nearest (0.5°)	13.5		
Rate of Displacement (mm/min)	2.5	2.5	2.5

Comments/Departure from specified procedure: None

Approved Signature

James Fisher Testing Services Limited

Phil Thorp, Laboratory Manager

 ${\it James Fisher Testing Services Limited, a company registered in England and Wales with registration number: 01182561}$

Registered office: Fisher House, PO Box 4, Barrow-in-Furness, Cumbria, LA14 1HR

RS80 Issue 1

Page 1 of 1

LABORATORY TEST REPORT

Determination of Particle Size Distribution - BS 1377: Part 2: 1990

Determination of Particle Size Distribution (Hydrometer Sedimentation) - BS 1377: Part 2: 1990 Cl. 9.5 Moisture content to BS 1377: Part 2: 1990 Oven Drying Method Cl 3.2

Project: Cork Line Level Crossings Job No: 19-135 Client: **OCB** Geotechnical Lab Ref No.: ST 93858 Unit 1 Carrigogna **Date Received:** 11/03/2020 Midleton 02/04/2020 **Date Reported:** Co Cork **Date Tested:** 01/04/2020 2003-104 Soil Order No: Material:

Dark Clay, Sandy Originator: Ian Holley **Visual Description**

Client Ref. XC212-CRPC01 Type B Sample 27

Location: XC212-CRPC01 Type B Sample 27

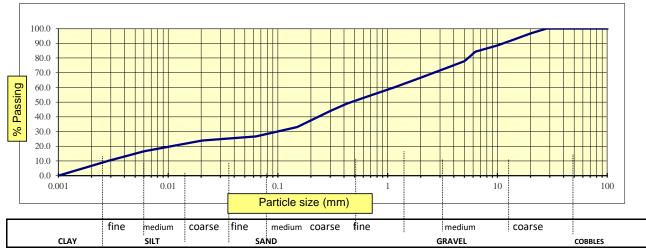
Supplier: Client Info.

Client Info. Source:

Depth (m): 8.0-8.8m

Client Request **Sampling Reason:**

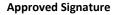
Sampled By: Client


Specification:

Client Preparation Method: Without Organics Preparation

Notes: Disturbed sample from cleanout

Moisture Content%: 27


BS Sieve	%	Specification
Size	Passing	
125 mm	100	
100 mm	100	
90 mm	100	
75 mm	100	
63 mm	100	
50 mm	100	
37.5 mm	100	
28 mm	100	
20 mm	97	
14 mm	92	
10 mm	89	
6.3 mm	84	
5 mm	78	
3.35 mm	73	
2 mm	67	
1.18 mm	60	
0.6 mm	53	
0.425 mm	49	
0.3 mm	44	
0.15 mm	33	
0.063 mm	27	
0.0205 mm	24	_
0.0060 mm	17	
0.0029 mm	10	
0.0029 mm	10	

Tested in accordance with BS 1377: Part 2: 1990 Clause 3.2, 9.2 and 9.5

Sedimentation by Hydrometer - Not UKAS

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

JAMES FISHER TESTING SERVICES (IRELAND) LTD.

☐ James Ward, Operations Manager

Appendix E	Environmental Laboratory Test Results

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 20-08714-1

Initial Date of Issue: 25-Mar-2020

Client Environmental Laboratory Services Ltd

Client Address: Acorn Business Campus

Mahon Industrial Park

Blackrock Cork Ireland

Contact(s): Emer Kearney

Results

Project Water Analysis

Quotation No.: Q20-19728 Date Received: 19-Mar-2020

Order No.: 6997 Date Instructed: 19-Mar-2020

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 25-Mar-2020

Date Approved: 25-Mar-2020

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Environmental Laboratory	Client: Environmental Laboratory Chemtest Job No.: 20-08714 20-08714						
Services Ltd		Chemitest Job No.:			20-06714	20-06714	
Quotation No.: Q20-19728		(st Sam	•	988286	988287
Order No.: 6997				nt Samp		177724/001	177724/002
			Cli	ent Sam		1	2
					e Type:	SOIL	SOIL
				Top De		1.00	3.00
				Date Sa		02-Mar-2020	04-Mar-2020
Determinand	Accred.	SOP	Туре	Units	LOD		
pH	U	1010	10:1		N/A	8.9	8.1
Cyanide (Free)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	μg/l	1.0	13	1.5
Boron (Dissolved)	U	1450	10:1	μg/l	20	< 20	62
Barium (Dissolved)	U	1450	10:1	μg/l	5.0	6.2	35
Beryllium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	μg/l	0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	μg/l	1.0	3.4	2.4
Mercury (Dissolved)	U	1450	10:1	μg/l	0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	μg/l	1.0	< 1.0	< 1.0
Lead (Dissolved)	U	1450	10:1	μg/l	1.0	1.4	< 1.0
Selenium (Dissolved)	U	1450	10:1	μg/l	1.0	1.1	< 1.0
Vanadium (Dissolved)	U	1450	10:1	μg/l	1.0	3.4	< 1.0
Zinc (Dissolved)	U	1450	10:1	μg/l	1.0	1.8	3.0
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[B] < 5.0	[B] < 5.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	[B] < 0.10	[B] < 0.10
Aromatic TPH >C35-C44	N	1680	10:1	μg/l	50.00	[B] < 50	[B] < 50
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	5.0	[B] < 5.0	[B] < 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	10	[B] < 10	[B] < 10
Benzene	U	1760	10:1	μg/l	1.0	[B] < 1.0	[B] < 1.0
Toluene	U	1760	10:1	μg/l	1.0	[B] < 1.0	[B] < 1.0
Ethylbenzene	U	1760	10:1	μg/l	1.0	[B] < 1.0	[B] < 1.0
m & p-Xylene	Ü	1760	10:1	μg/l	1.0	[B] < 1.0	[B] < 1.0

Results - Leachate

i Toject. Water Analysis							
Client: Environmental Laboratory Services Ltd			Chei	mtest J	ob No.:	20-08714	20-08714
Quotation No.: Q20-19728		-	Chemte	st Sam	ple ID.:	988286	988287
Order No.: 6997				nt Samp		177724/001	177724/002
				ent Sam		1	2
				Sampl	e Type:	SOIL	SOIL
				Top De		1.00	3.00
				Date Sa		02-Mar-2020	04-Mar-2020
Determinand	Accred.	SOP	Туре	Units	LOD		
o-Xylene	U	1760	10:1	μg/l	1.0	[B] 2.0	[B] < 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	μg/l	1.0	[B] < 1.0	[B] < 1.0
Naphthalene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Acenaphthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluorene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Phenanthrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Chrysene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	μg/l	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	ua/l	2.0	< 2.0	< 2.0

Client: Environmental Laboratory Services Ltd		Chemtest Job No.:			20-08714	20-08714
Quotation No.: Q20-19728	(Chemte	st Sam	ple ID.:	988286	988287
Order No.: 6997		Clie	nt Samp	le Ref.:	177724/001	177724/002
		Client Sample ID.:			1	2
		Sample Type:			SOIL	SOIL
		Top Depth (m):			1.00	3.00
		Date Sampled:		02-Mar-2020	04-Mar-2020	
Determinand	Accred.	SOP	Units	LOD		
Moisture	N	2030	%	0.020	13	26
рН	U	2010		4.0	9.4	7.8

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
988286	177724/001	1		02-Mar-2020	В	Amber Glass 250ml
988286	177724/001	1		02-Mar-2020	В	Plastic Tub 500g
988287	177724/002	2		04-Mar-2020	В	Amber Glass 250ml
988287	177724/002	2		04-Mar-2020	В	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5-C6, >C6-C8, >C8-C10*, >C10-C12*, >C12-C16*, >C16-C21*, >C21-C35*, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10*, >C10-C12*, >C12-C16*, >C16-C21*, >C21-C35*, >C35-C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Appendix F	Pre & Post Site Condition Photographs

larnród Éireann Cork Line Level Crossings XC212 (19-135-3) XC212
Pre Works Site Photographs

larnród Éireann

Engineer:

Jacob's

ate: 2020

larnród Éireann Cork Line Level Crossings XC212 (19-135-3) XC212

Post Works Site Photographs

Client:

larnród Éireann

Engineer

Jacob's

Date:

2020

larnród Éireann Cork Line Level Crossings XC212 (19-135-3) XC212

Post Works Site Photographs

Client

larnród Éireann

Enginee

Jacob's

Date:

2020

Cork Line Level Crossings – XC215 Ground Investigation

Primary Author: Ian Holley

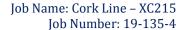

Client: Irish Rail

Client's Representative: JACOBS

Report Date: 25th November 2020

Report No.: OCB19-135-4

File Location: OCB19-135-4/Reporting/XC215



CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY	1
2	SCO	PE	1
3	DES	CRIPTION OF SITE	1
4	SITE	OPERATIONS	
	4.1	Boreholes	
		4.1.1 Cable Percussion Boreholes	2
	4.2	4.1.2 Boreholes by Combined Percussion Boring and Rotary Follow-On Drilling Standpipe Installations	
	4.3	Trial Pits	4
	4.4	Indirect CBR Tests	
	4.5	Water Purging	5
	4.6	Surveying	5
5	LAB	ORATORY WORK	6
	5.1	Geotechnical Laboratory Testing of Soils	6
6	GRO	UND CONDITIONS	
	6.1	General Geology of the Area	
	6.2	Ground Types Encountered During Investigation of the Site	7
	6.3	Groundwater	7
7	DISC	CUSSION	
	7.1	Proposed Construction	8
8	REF	ERENCES	9

APPENDICES

Appendix A Site and Exploratory Hole Location Plans

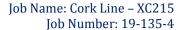
Appendix B Borehole Logs

Appendix C Core Photographs

Appendix D Trial Pit Logs

Appendix E Trial Pit Photos

Appendix F Indirect CBR Test Results


Appendix G Water Purging Data & Logs

Appendix H Geotechnical Soil Laboratory Test Results

Appendix I Geotechnical Rock Core Laboratory Test Results

Appendix J Environmental Laboratory Test Results

Appendix K Pre & Post Site Condition Photographs

Document Control Sheet

Report No.: OCB19-135-4

Project title: Cork Line Level Crossings – XC215

Client: Irish Rail

Client's Representative: JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft	Ian Holley	Glen Byrne	Michael O'Connell	1st October 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design - Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

Abbreviations use	d on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample
P	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
D	Small disturbed sample
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (C)	Standard penetration test using 60-degree solid cone
x,x/x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
	The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations rela	nting to rock core – reference Clause 44.4.4 of BS 5930: 1999
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
	Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse
NI	gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.

Cork Line Level Crossings - XC215

1 AUTHORITY

On the instructions of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings

This report details the work carried out both on site at XC215 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included boreholes, trial pits, indirect CBR testing, installation of standpipes, water purging, soil and rock core sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC215 is located in the Imphrick townland approximately 4.5km south of Charleville and immediately west of the N20. The crossing is currently manned with a house and small cabin to the west. The site is surrounded by agricultural land with a number of houses and farms in the wider area.

The site is generally flat within the site area.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 18th February 2020 and 14th August 2020, included:

- One (1) Cable Percussion Borehole
- Two (2) Cable Percussion with Rotary follow-on Boreholes
- A Standpipe Installation in two (2) Boreholes
- Nine (9) Trial Pits
- Indirect CBR tests at eighteen (18) locations
- Water Purging in two (2) locations

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Boreholes

A total of three boreholes were put down in a minimum diameter of 101mm through soils and rock strata to their completion depths by a combination of methods, including cable percussion boring by Pilcon rigs, and rotary drilling by a T44 rig.

The borehole logs state the methodology and plant used for each location, as well as the appropriate depth ranges.

A summary of the boreholes, subdivided by category in accordance with the methods employed for their completion, is presented in the following sub-sections.

Appendix B presents the borehole logs.

4.1.1 Cable Percussion Boreholes

One borehole (CP01) was put down to completion in minimum 200mm diameter using a Pilcon cable percussion soil boring rig. The borehole was terminated upon encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.1.2 Boreholes by Combined Percussion Boring and Rotary Follow-On Drilling

Two boreholes (CPRC01 & CPRC02) were put down by a combination of cable percussion boring and rotary follow-on open hole and coring drilling techniques. Where the cable percussion borehole had not been advanced onto bedrock, rotary percussive methods were employed to advance the borehole to completion/obstruction.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals throughout the overburden using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Where coring was carried out within bedrock strata, Geobor S Coring was used. The core was extracted in up to 1.5m lengths using a SK6L core barrel, which produced core of nominal 102mm diameter, and was placed in single channel wooden core boxes.

The core was subsequently photographed and examined by a qualified and experienced Engineering Geologist, thus enabling the production of an engineering log in accordance with *BS 5930:1999 + A2: 2010, Code of practice for site investigations* (Incorporating Amendment Nos. 1 and 2).

Core logging was carried out both on and off site by the OCB Geotechnical Engineering Geologist.

Appendix B presents the borehole logs, with core photographs presented in Appendix C.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in boreholes CP01 and CPRC01.

Details of the installations, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole logs.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on four occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Trial Pits

Nine trial pits (TP01–TP09) were excavated using a 15t tracked excavator fitted with a 600mm wide bucket, to depths between 0.80m and 2.40m. Most trial pits were terminated due to the pit walls collapsing while TP02 was terminated at 0.80m due to a possible archaeological feature and TP08 and TP09 were terminated early to prevent damage to the property owners' field.

Environmental samples were taken at depths of 0.05m, 0.50m and 1.0m in each trial pit.

Disturbed (small tub and bulk bag) samples were taken at standard depth intervals and at change of strata.

Hand Vane testing was completed successfully where appropriate and where specified by Jacobs.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix D presents the trial pit logs with photographs of the pits and arising provided in Appendix E.

4.4 Indirect CBR Tests

An indirect CBR test was conducted at eighteen locations (TRL01 to TRL18) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix F in the form of plots of the variation with depth of the cumulative blow count. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, as proposed by DTP Interim Advice Note 73/06 (Design Guidance for Road Pavement Foundations):

Log CBR = 2.48-1.057 Log (mm/blow)

The occasionally elevated CBR values could be a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.5 Water Purging

Prior to sampling from each standpipe (in CP01 and CPRC01) water purging was carried out.

Appendix G presents the water purging data logs.

4.6 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in Appendix K.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** Moisture Content measurement, Atterberg Limit tests and particle size distribution analysis.
- **shear strength**: 60mm Shear Box test
- **soil chemistry:** pH, Sulphur content, Organic Matter content and water-soluble and total Sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix H.

5.2 Geotechnical Laboratory Testing of Rock

Laboratory testing of rock sub-samples comprised:

Point Load index

Test		Test carried out in accordance with
Point	Load	ISRM Suggested Methods (1985) Suggested method for determining
Index		point-load strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, pp.
		53-60

The test results are presented in Appendix I.

5.3 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix J.

6 GROUND CONDITIONS

6.1 General Geology of the Area

Teagasc soil mapping indicates that the site vicinity is underlain by Glacial Till derived chiefly from Devonian sandstones.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Upper Devonian-age Kiltorcan Formation, which consists of thick coarse-grained white-yellow sandstone (commonly in channel form), intraformational mudflake conglomerate, red-yellow flaggy sandstone, and red and green silty mudstone and mudstone.

The Upper Devonian strata were subjected to compressional deformation (tectonic shortening) during the Variscan Orogeny in Late Carboniferous and Early Permian times, resulting in the formation of an east-northeast west-southwest trending fold-thrust belt. The site is located on the west side of the Ballyhoura Mountains on either side of a west-southwest to east-northeast orientated anticline (upfold). Bedrock in the site vicinity dips at variable angles to the north, west and south, having undergone buckle folding and contractional thrust faulting.

The site is underlain by a regionally important fissured bedrock aquifer and has a moderate to high groundwater vulnerability.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: Encountered typically between 200mm and 350mm thickness.
- Glacial Till: Sandy gravelly clay/silt, frequently with low cobble content. Observed directly below the topsoil and at greater depths below the range of 3.60m and 4.70m bgl.
- Fluvioglacial deposits: Observed predominantly between the upper strata and lower strata (glacial till). Typically loose to medium dense sands and gravels.
- Bedrock (Sandstone, Mudstone and Siltstone): Rockhead was encountered at 6.60m in CPRC02 and 9.60m in CPRC01. Predominantly Medium Strong Sandstone with some weaker layers of Mudstone and Siltstone interbedded.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

It should be noted that any groundwater strikes within bedrock may have been masked by the fluid used as the drilling flush medium.

Groundwater monitoring to date in standpipe installations, yielded the following results:

Data	Depth to standing water level (m)								
Date	CP01	CPRC01							
13/08/20	Dry	9.51							
17/08/20	Dry	9.57							
21/08/20	Dry	4.64							
29/09/20	Dry	7.16							

Continued monitoring of the two installed standpipes will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

8 REFERENCES

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. Eurocode 7 - Geotechnical design - Part 1 General Rules. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. Code of practice for ground investigations. British Standards Institution, London.

BS EN ISO 14688-1: 2002. Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution, London.

BS EN ISO 14689-1: 2003. *Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description*. British Standards Institution, London.

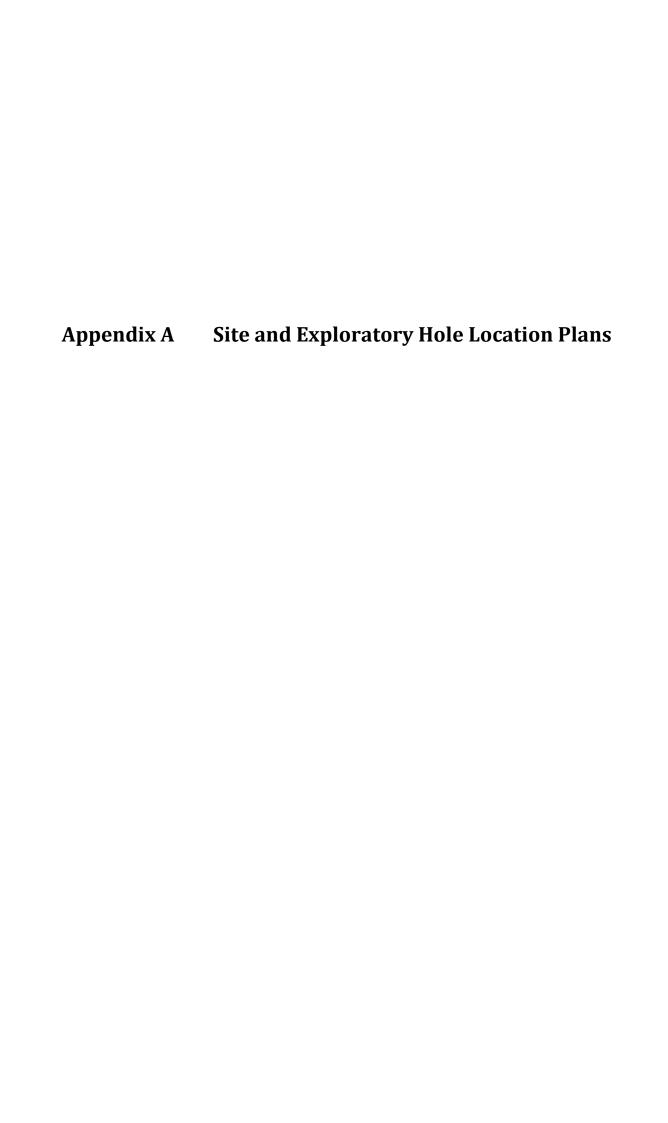
Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

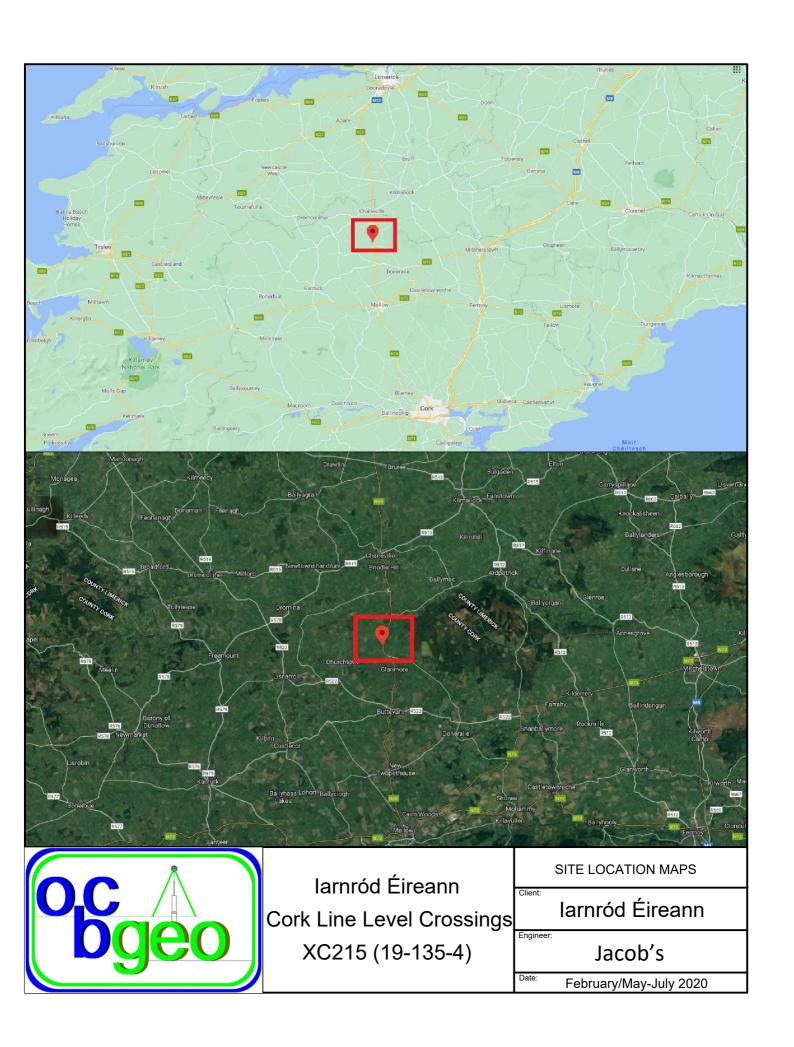
Building Research Establishment, 2007. BRE Digest 365: Soakaways.

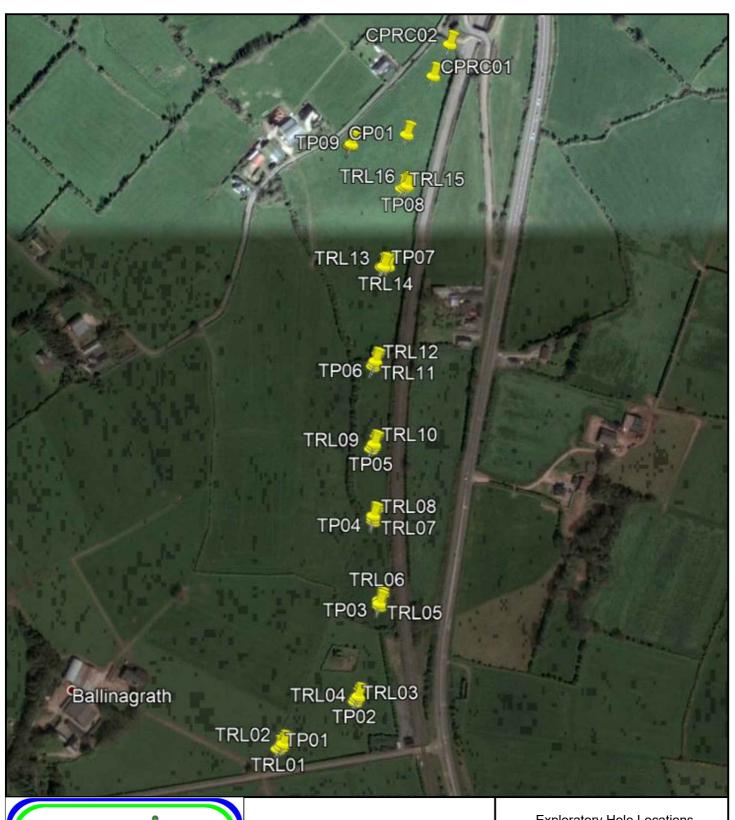
BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017.

http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/


Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015


https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA Waste Classification 2015 Web. pdf


Environment Agency UK (2009). Soil Guideline Values (SGVs).

https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/

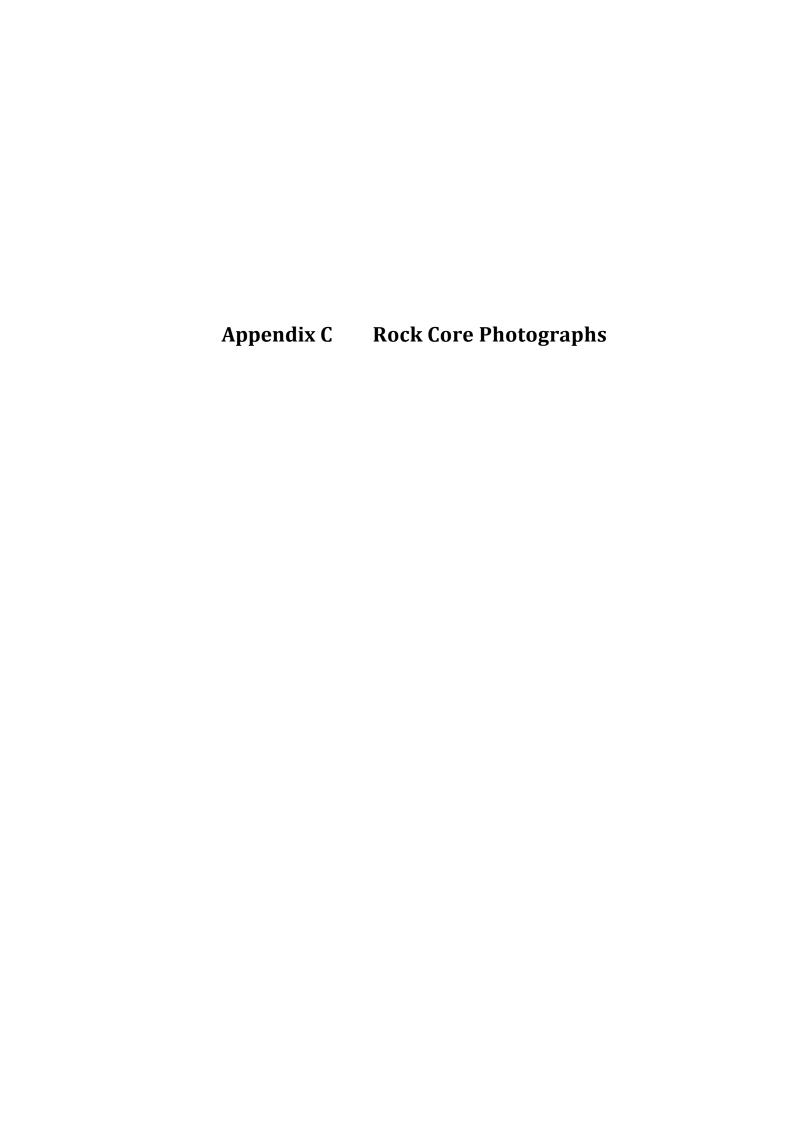
larnród Éireann Cork Line Level Crossings XC215 (19-135-4)

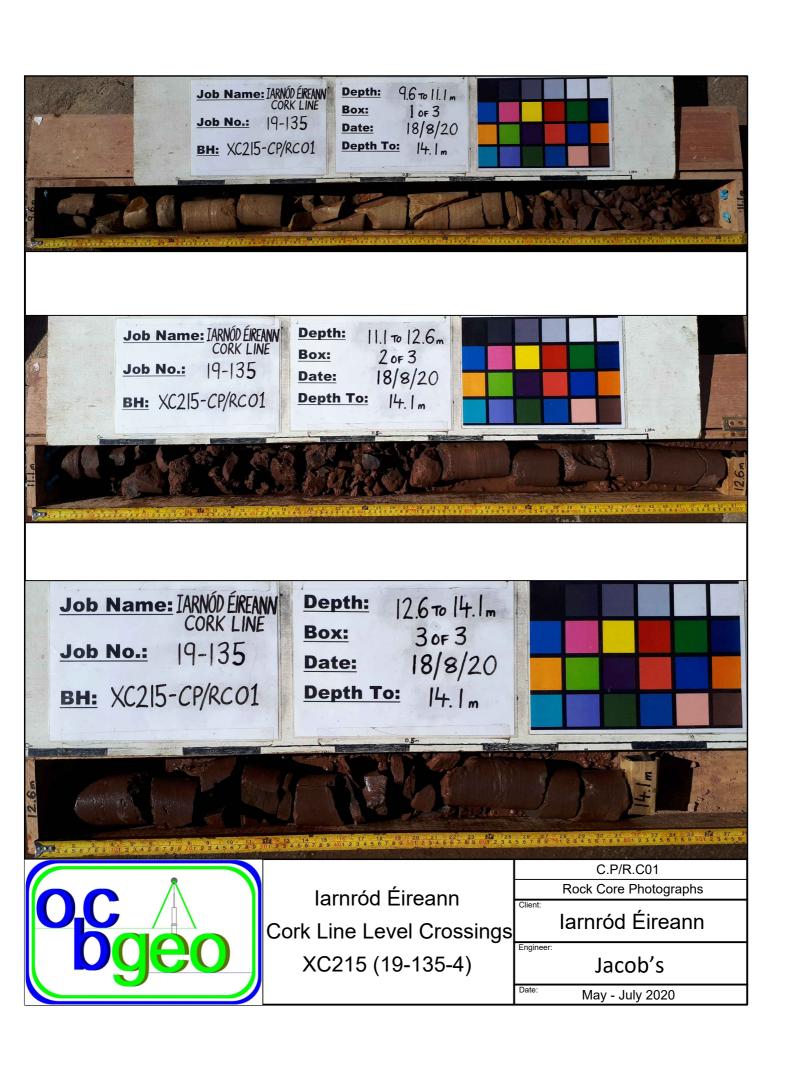
Exploratory Hole Locations

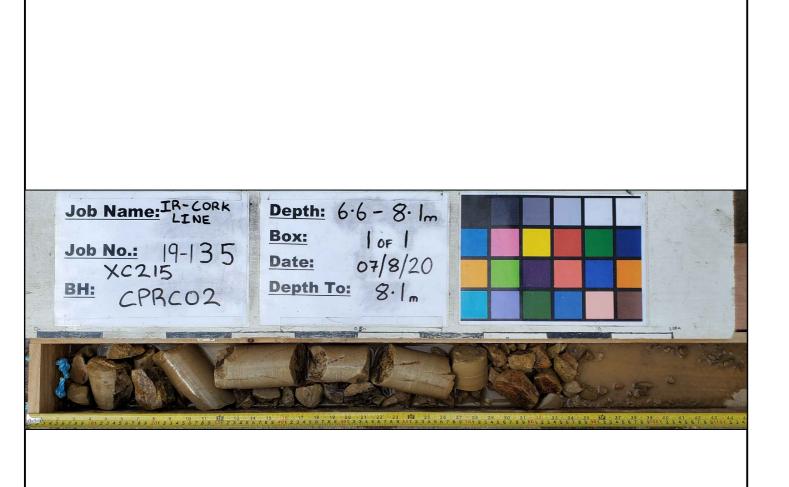
Client: Iarnród Éireann

Engineer Jacob's

February/May-July 2020




((A		Project		-	t Name:		ehole	
			19-135 Coordi		Cork Li	ne Level Crossings	X	215-0	CP01
l	Dye	U	55354			d Éireann / Irish Rail	Sł	neet 1	of 1
Method:						s Representative:	Sca	le: 1	L:50
Cable Percu	ıssion		61523	7.48 N	JACOB:	S	Dri	ler: /	AA
Plant:				d Level:	Dates:			ger:	
Pilcon Depth	Sample / Cas	ing Water	98.4	2 mOD Depth (m)		29/05/2020 - 03/06/2020	<u> </u>		1
(m) 0.05	Tests Deg	pth Depth (m) Field Records	(mOD)	(Thickness)	Legend	Description TOPSOIL	Water	Backfil	
0.20 - 1.20	B2		98.22	- (0.20) - 0.20	× ×	Reddish brown slightly slity slightly gravelly very sandy CLAY. Gravel is fine	-]
0.20 - 1.20 0.50	D3 ES4			Ė	× ×	to medium, subrounded. Sand is fine to coarse.			0.5
				(1.00)	<u> </u>				4
				-	<u>×</u>				1.0 —
1.20 - 2.00 1.20 - 2.00	B5 D6		97.22	1.20		Loose reddish brown slightly silty gravelly clayey SAND with low cobble			-
1.20 - 1.65	SPT (C) N=6	N=6 (1,1/2,1,2,1)		- (0.80)	××	content. Gravel is fine to coarse, angular to subrounded. Sand is fine to coarse. Cobbles are subrounded.		·;	1.5 —
1.50	ES7								
2.00 - 3.00 2.00 - 3.00	B8 D9		96.42	2.00	a × , a × ,	Medium Dense reddish brown slightly silty sandy GRAVEL with medium			2.0
2.00 - 2.45	SPT (C) N=17	N=17 (3,6/4,5,4,4)		10.00	a×, , a×	cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are subangular to subrounded.		H	
				- (1.00) -	a X: , a X ;			:#:	2.5
3.00	ES10		95.42	3.00	a X , a X ;				3.0
3.00 - 3.60	B11		33.42	-	× ^ × ×	Medium Dense reddish brown slightly silty clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded.			3.0
3.00 - 3.60 3.00 - 3.45	D12 SPT (C)	N=20 (2,4/4,6,5,5)		- (0.60) -	× ×				3.5
3.60 - 4.50	N=20 B13		94.82	3.60	\$ <u>0</u>	Stiff brown mottled grey slightly gravelly slightly sandy silty CLAY with			
3.60 - 4.50 4.00 - 4.45	D14 SPT (C)	N=17 (3,3/2,4,4,7)		(0.90)	**************************************	medium cobble content and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles and boulders			4.0
	N=17			(0.30)	~	are subrounded.			
4.50 - 5.50	B15		93.92	4.50	\$ <u>\$</u>	Soft to Firm brown slightly silty slightly sandy slightly gravelly CLAY with	- 1		4.5
4.50 - 5.50	D16			-	× × 0	low to medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded.			7
5.00 - 5.45	SPT (C) N=8	N=8 (1,1/1,3,2,2)		-	*****	ecuise, subungular to subrounded.			5.0 —
	IN-8			(1.50)	×.				
5.50 - 6.00 5.50 - 6.50	B17 D18			-	<u> </u>				5.5 —
					0 2 0 0 0 0				
6.00 - 6.80 6.00 - 6.80	B19 D20		92.42	- 6.00 -		Loose to Medium Dense reddish brown sandy clayey GRAVEL. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded.			6.0 —
6.00 - 6.45	SPT (C) N=12	N=12 (1,1/2,3,3,4)		-					6.5
c oo = ===				10.00					3.3
6.80 - 7.60 6.80 - 7.60	B21 D22			- (1.60) -	-				7.0
6.80 - 6.80	SPT (C)	50 (25 for 0mm/50 for 0mm)		_					
7.00 - 7.45	SPT (C) N=22	N=22 (2,4/3,5,7,7)	00.00	7.00					7.5
7.60 - 7.60	SPT (C)	50 (25 for 0mm/50 for 0mm)	90.82	7.60		End of borehole at 7.600m	1 []
				-					8.0
				<u> </u>					
				-					8.5
				-					
				-					9.0
				-					
				<u>-</u>					9.5 —
				-					-
Remarks						Water Added Water S	Strike -	Genera	ıl
nemarks						From (m) To (m) Struck at (m) Casing 1.20 3.00 3.70 3		ime (min) F	
						3.00 3.60	alli	hoto!!	
						To (m) Diam (mm) From (m)	To (m		e (hh:mm)
						7.60 200 6.80 7.60	7.60		01:00


		*			Project	: No.:	Projec	t Name:	Boreh	ole	No.:			
C)_[C]	19-135		Cork Li	ne Level Crossings	XC215	-CP	RC01			
	DO	e (Coordi	nates:	Client:		Shee	t 1	of 2			
No. of				<u>/</u>	55358			d Éireann / Irish Rail	6		F0			
Method: Cable Percussion+Rotary Open+Rotary Coring						615311 63 N		s Representative:	Scale: 1:5					
	Plant:						JACOB:		Driller: AA +NO					
Pilcon+T44						9 mOD	Dutes.	28/05/2020 - 31/07/2020	Logger: IH					
Depth	Sample /	Casing Depth	Water Depth (m)	Field Records	Level	Depth (m)	Legend		Bac Bac	kfill				
(m) 0.05	Tests ES1	(m)	(m)		(mOD)	(Thickness) (0.30)		TOPSOIL	3		-			
0.30 - 1.20 0.30 - 1.20 0.50	B2 D3 ES4				99.28	(0.90)	* * * * * * * * * * * * * * * * * * *	Dark brown sandy gravelly SILT. Gravel is fine to medium, subangular to subrounded. sand is fine to coarse.			-			
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B5 D6 SPT (C) N=8 ES7			N=8 (2,1/2,3,1,2)	98.38	1.20 (0.80)		Loose dark grey / brown slightly silty clayey very sandy GRAVEL with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded.			1.5 -			
2.00 - 3.00 2.00 - 3.00 2.00 - 2.45	B8 D9 SPT (C) N=11			N=11 (3,2/2,3,4,2)	97.58	(1.00)	0 0 0 0 0 0 0 0	Medium Dense dark grey / brown slightly silty clayey very sandy GRAVEL with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are angular to subangular			2.0			
3.00 3.00 - 4.00 3.00 - 4.00 3.00 - 3.45	ES10 B11 D12 SPT (C) N=16			N=16 (1,1/4,4,4,4)	96.58	3.00		Medium Dense reddish brown clayey very sandy GRAVEL with medium cobble content. Gravel is fine to coarse, subangular to subrounded. Cobbles are angular to subangular.			3.0			
4.00 - 4.70 4.00 - 4.70 4.00 - 4.45	B13 D14 SPT (C)			N=14 (1,2/2,3,3,6)	95.58	4.00		Medium Dense grey angular to subrounded COBBLES with a matrix of reddish brown slightly silty slightly clayey gravelly SAND.	_		4.0			
4.70 - 6.00 4.70 - 6.00	N=14 B15 D16				94.88	4.70		Firm brown slightly gravelly slightly sandy silty CLAY with low cobble			4.5 -			
5.00 - 5.45	SPT (C) N=9			N=9 (4,1/1,2,3,3)		(1.30)		content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are subangular to subrounded.	0		5.5 -			
6.00 - 6.50 6.00 - 6.50 6.00 - 6.45	B17 D18 SPT (C)			N=13 (2,2/3,3,2,5)	93.58	6.00	× × ·	Firm brown slightly gravelly slightly sandy silty CLAY. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse.			6.0			
6.50 - 6.50	N=13 SPT (C)			50 (25 for 0mm/50 for 0mm)	93.08	6.50		Rotary Open Hole Drilling. Drillers Description: Boulders with sand			7.0			
7.50 - 7.95	SPT (C) N=38			N=38 (6,6/8,8,8,14)		(3.10)			0		7.5 -			
8.50 - 8.95	SPT (C) N=49			N=49 (9,9/9,12,12,16)							8.5 -			
3:68 - 3:68	SPT (C)			50 (25 for 0mm/50 50 (25 for 0mm/50 50 (0mm) for 0mm)	89.98	9.60	000	Medium Strong light greyish brown fine to medium grained SANDSTONE.			9.5 —			
			14	for dmim)		_ (1.08)		Distinctly weathered with brown, black and orange brown discolouration (iron oxide staining) penetrating up to 5mmfrom discontinuities and			10.0			
	TCR SCR	RQD	FI			-		Continued on Next Page		<u>]`.</u>				
Remarks Cable percussing	on termina	ated a	† 6 F	Om due to probablo	houlder	ohstruction	Rotany	From (m) To (m) struck at (m) Casing 1.20 4.70	elling Detail	nin) Ro s Time	(hh:mm)			

			A		<u> </u>	Projec	t No.:	Projec	t Name:	Вс	reho	le I	No.:				
) [C	,	<u>/</u> \			19-135			ne Level Crossings	XC	215	-CP	RC01				
	D	g	e	0		Coordi		Client: Iarnród Éireann / Irish Rail				Sheet 2 of					
Method:					<u>/</u>	55358	1.51 E		s Representative:		ale:	1.	50				
Cable Percussion+Rotary Open+Rotary Coring Plant:					Rotary Coring	61531	1.63 N	JACOB:			<u>Д</u>						
						Groun	d Level:	Dates:		Dr	NOB						
Pilcon+T44						99.5	9 mOD		28/05/2020 - 31/07/2020	Lo	gger	: IH	ı				
Depth (m)	TCR	SCF	RQD	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend	Description	Water	Bac	kfill					
(,						(-		occasional orange brown speckling.	ŕ	i.E		10.5 —				
	100	55	8			88.90	(100)0626)		Discontinuities: Very closely to closely spaced.				-				
						88.88			1.) Subhorizontal, planar, rough. 2.) Step to subvertical, planar, rough	1			11.0				
11.10				NI			(1.06)		Very weak light olive green MUDSTONE with black and orange iron oxide staining on extremely closely spaced fractures.				-				
									Very weak to weak maroon MUDSTONE / SILTSTONE, distinctly weathered				11.5 —				
		20				87.82	11.77	××××	to destructured locally broken dow to purple gravelly silty Clay.		E		-				
	84	38	8				-	× × × × × × × × × × × × × × × × × ×	Discontinuities: Extremely closely to very closely spaced, undulating and planar, slightly				12.0 -				
								× × × × × × × × × × × × × × × × × ×	rough with some black and orange brown iron oxide staining on surfaces.]	-				
12.60							Ē	× × × × × × × × × × × × × × × × × × ×	1.) Shallow to subhorizontal planar to slightly undulating slightly rough. 2.) Steep to subvertical, planar to slightly undulating, slightly rough.				12.5				
12.00							Ē	× × × × × × × × × × × × × × × × × ×	Weak to medium strong maroon fine sandy SILTSTONE, locally thinly laminated with occasional thin laminae of pale red (pink) fine grained				=				
				15			(2.33)	× × × × × × × × × × × × × × × × × × ×	SANDSTONE. Occasional grey (locally weathered to yellowish brown) possible calcrete nodules, locally weathered out to voids.				13.0				
	54	42	17					× × × × × × × × × × × × × × × × × ×					-				
			1					× × × × × × × × × × × × × × × × × ×	Distinctly weathered with a little reddish brown slightly sandy slightly gravelly silty Clay infilling of discontinuities.				13.5 —				
								× × × × × × × × × × × × × × × × × × ×	Discontinuities:				-				
14.10						85.48	14.10	× × × × × × × × × × × × × × × × × × ×	Very closely to closely spaced with black iron oxide staining on surfaces.				14.0				
									End of borehole at 14.100m				-				
													14.5 —				
							Ē						-				
							_						15.0 —				
													-				
													15.5 — -				
													-				
													16.0 -				
													-				
													16.5 -				
													-				
													17.0				
							E						17.5				
							E						17.5 — - -				
													18.0				
							E						:				
							Ė						18.5 —				
							Ė										
							-						19.0				
							E						=				
							E						19.5 —				
							[=				
							-						20.0 —				
							E						=				
							E						20.5				
	TCR	SCR	RQD	FI						上							
Remarks		-		_					Water Added Water 5 From (m) To (m) Struck at (m) Casing				se to (m				
									1.20 4.70								
											Details		(l. l.				
C-bl-					Dan desa (h = 12	-1	Б.	To (m) Diam (mm) From (m) 6.50 200 6.50 9.60 151	To (r 6.5			(hh:mm) 1:00				
cable percussion	on ter	mına	ited a	at 6.5	om due to probable	poulder	obstruction	i. Kotary	techniques employed thereafter. 9.60 151								

			Λ			Project		_	t Name:			e No.:				
						19-135 Coordi		Client:	ne Level Crossings	XC	215-C	PRCUZ				
	U	9				55360		larnród Éireann / Irish Rail			Sheet 1 c					
Method:	Method: Cable Percussion+Rotary Open+Rotary Coring				61534	9.74 N	Client's Representative:				1:50					
	1011+1	lola	ry O	pen -	-Rotary Coring			JACOBS				AA +NOB				
Plant: Pilcon+T44							d Level: 1 mOD	Dates:	27/05/2020 - 30/07/2020	Lo						
Depth	Sam	ple /	Casing Depth	Water Depth (m)	Field Records	Level	Depth (m)	Legend		Water	Backfi					
(m) 0.05	ES17		(m)	(m)	Field Necolus	(mOD)	(Thickness)	Legend	TOPSOIL	×	Dackii	" -				
0.30 - 1.20 0.30 - 1.20 0.50	B1 D2 ES18	3				99.91	0.30		Dark brown slightly clayey slightly sandy slightly gravelly SILT with low cobble content and frequent rootlets. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded.			0.5 -				
1.20 - 2.00 1.20 - 2.00 1.20 - 1.65	B3 D4 SPT N=7 ES19				N=7 (2,1/2,1,2,2)	99.01	1.20		Loose dark grey / brown slightly sandy slightly silty GRAVEL with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subangular to subrounded			1.5 -				
2.00 - 3.00 2.00 - 3.00 2.00 - 2.45	B5 D6 SPT N=4	(C)			N=46 (10,13/11,11,13,11)	98.21	2.00		Dense reddish brown clayey very sandy GRAVEL with low cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are subangular to subrounded.			2.0 —				
3.00 3.00 - 3.50 3.00 - 3.50 3.00 - 3.45	ES20 B7 D8 SPT	(C)			N=16 (4,7/6,4,3,3)	97.21	3.00 (0.50)		Medium Dense subrounded grey COBBLES with a matrix of grey slightly silty very gravelly SAND.			3.0 -				
3.50 - 4.20 3.50 - 4.20 4.00 - 4.45 4.20 - 5.00	N=10 B9 D10 SPT N=11 B11	(C) 5			N=15 (1,1/2,1,3,9)	96.01	(0.70)		Firm to stiff reddish brown slightly silty sandy slightly gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded. Stiff reddish brown slightly sandy gravelly silty CLAY with low cobble			4.0 —				
4.20 - 5.00 5.00 - 6.00 5.00 - 6.00 5.00 - 5.45	D12 B13 D14 SPT N=19	(C)			N=19 (3,4/4,4,6,5)		(2.40)		content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles are subrounded.			5.0				
6.00 - 6.20 6.00 - 6.20 6.00 - 6.20	B15 D16 SPT	(C)			75 (5,8/75 for 50mm) 50 (25 for 0mm/50		6.60	x x 0 x x 0 x x 0 x x 0				6.0 -				
0.20 - 0.20	60	30	17	NI	for 0mm)	93.61	(1.50)		Medium Strong to Strong, pale yellow / grey, medium grained SANDSTONE. Distinctly weathered with pervasive light brown clay staining and infill of discontinuities. Much black and orange / brown oxide staining on discontinuity surfaces. Discontinuities: Subhorizontal to 20°. Planar, rough, very closely spaced.			7.0 —				
8.10						92.11	8.10	:::::	Borehole collapsed. Likely entered a void or soft clay band at this depth.			8.0 —				
						90.61	(1.50)		End of borehole at 9.600m			9.0 —				
	TCR	SCR	RQD	FI								10.0 —				
Remarks	1			<u> </u>		I	I	I			- Genera					
Borehole collap					·				From (m) To (m) Struck at (m) Casing		Details n) Tim	ne (hh:mm				

C.P/R.C02
Rock Core Photographs
Client:
Iarnród Éireann
Engineer:
Jacob's

Date:
May - July 2020

Appendix D

Trial Pit Logs

6			Project			: Name:			T	rial Pit	: No.:
	O_IC _/\	_	19-135			ne Level Crossings				XC215	5-TP01
	Dge (Co-ord		Client:					Sheet	1 of 1
			55338	2.20 L		l Éireann / Irish Rail					4.20
Method: Excavation			61448	$S \cup U \cup V$	JACOBS	Representative:			3	cale:	1:20
Plant:			Ground		Date:				D	river:	TS
Kobelco SK1	140SRu				18/02/	2020			L	ogger:	MN
Depth	Sample / Tests	Field Records	Level	Depth (m)	Legend		Description		Water		
(m) 0.05	ES1		(mOD)	(Thickness)		TOPSOIL: Soft greyish brown sli		silty CLAY with frequ			
				_		rootlets, moist.					-
				(0.35)							-
0.35 - 0.80	B2		90.16	- - 0.35							-
0.35 - 0.80	В3		30.10	- 0.33	××.	Soft to firm light brown slightly with low cobble content and oc			LAY		-
0.35 - 0.80 0.50	D4 ES5			-	×.×.	coarse. Gravel is fine to coarse,	angular to subrour				0.5
0.50		HVP=38, HVR=16		(0.45)	~ <u>~</u> × ₀	angular to subrounded, sandsto	one and slitstone.				-
				-	~ <u>~</u> × ₀						-
			89.71	- 0.80	OX.	Light brown mottled orange and	d reddish brown sli	ghtly clavey slightly s	ilty		-
				-	$\overset{\circ}{\circ}_{0}\overset{\circ}{\circ}_{0}$	very sandy GRAVEL with mediu	m cobble and low s	mall boulder content			-
1.00	ES6			-	$\overset{\circ}{\circ}\overset{\circ}{\circ}$	moist becoming wet by 1.55m. coarse, angular to subrounded.					1.0
1.10 - 1.60	В7			-	$\overset{\circ}{\circ}\overset{\circ}{\circ}$	subangular, sandstone and silts	tone.				-
1.10 - 1.60	D8			-	<u> </u>						-
				-	$\tilde{O}_{X}^{*}\tilde{O}_{X}$					_	-
				-	<u>Ŏ</u> , vo:						-
				(1.40)	<u>0</u> ,0.						1.5 —
		Rapid Inflow - Rose to 1.35m		- -	0,00				Z	_	_
				-	0,00						4
				-	<u> </u>						4
				-							_
				-	,						2.0
				-	$\overset{\sim}{\circ}$						_
			88.31	- - 2.20	0,0	Endo	of trial pit at 2.200m				4
				- -		Liid 0	in that pit at 2.200m				_
				-							_
				- -							2.5 —
				-							4
				- -							_
				- -							4
				-							_
				- -							3.0
				-							_
				-							4
				-							
				-							_
				-							3.5 —
				-							_
				-							4
				-							_
				-							_
				-					\perp		
Remarks	1	1	1				Water	Strikes:	Stabili	ty:	
							Struck at (m):	Remarks:	Sides	collapsi	ing
							1.55	Rapid Inflow - Rose	14# fr		1.00
								to 1.35m	Widt		1.90
Trial Pit term	inated at 2.20m d	lue to pit walls collapsing							Lengt	n:	4.80

			Project	: No.:	Project	: Name:			Tri	al Pit No.:
C			19-135		Cork Li	ne Level Crossings			×	C215-TP02
	Dge		Co-ord		Client:				S	heet 1 of 1
Na sta a di			55481	,.50 L		l Éireann / Irish Rail				1.20
Method: Excavation			61796	3.85 N	JACOBS	Representative:			50	ale: 1:20
Plant:			Ground	d Level:	Date:	,			Dr	iver: TS
Kobelco SK14	0SRu		97.95	5 mOD	18/02/	2020			Lo	gger: MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water	
0.00	ES1			(0.25)		TOPSOIL: Soft greyish brown sli rootlets, moist.	ghtly gravelly sandy	silty CLAY with frequ	ent	-
0.30 - 0.80 0.30 - 0.80	B3 D4		97.70	- 0.25 -		Firm (locally soft) light brown w gravelly sandy silty CLAY with lo moist. Sand is fine to coarse. Gr	w cobble content,	and occasional rootle		_
0.50 0.50	ES2	HVP=48, HVR=65		(0.55)		subangular. Cobbles are angular From 0.25m - 0.80m: WNW - Ed boundary. Firm grey slightly gra content and occasional rootlets,	r to subangular, san SE orientated, approv vellv sandv siltv CLA	dstone and siltstone.		0.5 —
			97.15	- 0.80	<u> </u>	End o	of trial pit at 0.800m			_ _ _
				- -						1.0 —
				-						_
				-						-
				- - -						1.5 —
				-						_
				-						2.0 —
				- - -						_
				-						_
				- -						2.5 —
				- - -						_
				- - -						_
				- - -						3.0
				-						_
				_						_
				<u>-</u>						3.5 —
				- -						_
				-						
				-						_
Remarks	1		I	l			Water	Strikes:	Stabilit	y:
Permission to e	excavate further	/ alternate trial pit in the	e area wa	s refused.			Struck at (m):	- t	Good	
							(,.	None Encountered	147 7	2.65
									Width	
Terminated due	e to possible ard	chaeological feature.							Length	7.40

			Project	: No.:		t Name:	Tri	al Pit	No.:
C) [C_/ \		19-135			ne Level Crossings	Х	C215	-TP03
	uge	U	Co-ord		Client:		S	heet	1 of 1
Method:		<u> </u>	55350	7.73 E		d Éireann / Irish Rail s Representative:	Soci	ıle.	1:20
Excavation			61466	3.96 N	JACOB:				
Plant:			Ground	d Level:	Date:		Dri	ver:	TS
Kobelco SK14	40SRu			D mOD	19/02/	2020	Lo	gger:	MN
Depth	Sample / Tests	Field Records	Level	Depth (m)		Description	Water		
(m) 0.05	ES1		(mOD)	(Thickness)		TOPSOIL: Soft dark brown slightly sandy silty CLAY with occasional gravel	>		
				(0.25)		and frequent rootlets, moist.			-
0.25 - 0.50	B2		92.14	- 0.25					-
0.25 - 0.50	D3			_	X X X X	Soft orange and black slightly sandy SILT / CLAY with high content of gravel to boulder sized cemented vesicular iron pan (composed of silty sand and			-
				(0.25)		gravel) and occasional rootlets. STONE FIELD DRAIN (0.3 - 0.6m); N - S orientation, 0.20m wide.			-
0.50 0.50 - 1.00	ES4 B5		91.90	- 0.50		STONE FIELD DRAIN (0.3 - 0.6m): N - S orientation, 0.20m wide. STONE FIELD DRAIN (0.3 - 0.9m): NE - SW orientation, 0.30m wide. Soft to firm becoming stiff light brown and orange mottled slightly sandy			0.5
0.50 - 1.00	D6			-	80°8	slightly gravelly silty CLAY with low cobble and boulder content and	_		-
		Water inflow from field drain No rise		_	\$00.00	occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles and boulders are angular to subangular,			-
0.70		HVP=57, HVR=20		(0.60)	0 0 0 0 0	sandstone and siltstone.			-
				-	0.50 \$02.8				-
1.00	ES7			_	0.50 \$02.8				1.0
			91.30	1.10	0.00 8.00.8	Soft reddish brown sandy gravelly silty CLAY with medium cobble and low	-		=
				(0.20)	-0-0 -0-0 -0-0-8	boulder content, wet.			-
1.30 - 1.80	B8		91.10	1.30	\$ 000 B	Brown slightly silty very sandy GRAVEL with medium cobble content and	▾		-
1.30 - 1.80	D9	Rapid Inflow - No rise		-	, a X	low boulder content, wet. Sand is fine to coarse. Gravel is fine to coarse,			-
				- -		angular to subrounded. Cobbles and boulders are subangular, sandstone, siltstone and quartz.			1.5 —
				- -	** ×				-
				- (0.70) -	** ×				-
				-	9 X				_
				-	9 X				_
			90.40	- - 2.00	9 X				2.0
				-		End of trial pit at 2.000m			=
				-					_
				_					_
				_					_
				_					2.5 —
				-					2.3
				-					
				_					_
				_					_
				-					-
				F					3.0
				-					_
				-					_
				-					-
				-					-
				-					3.5 —
				- -					-
				-					=
				- -					-
				-					-
Remarks						Water Strikes.	bility		ng
						Struck at (m): Remarks:	es co	llapsii	iig ———
						0.60 Water inflow from field drain No rise W	idth:		1.80
T. 160.						1.30 Rapid Inflow - No	ngth:		3.70
ırıaı Pit termir	nated at 2.00m o	due to pit walls collapsing	3.			1156			5.70

			Project	: No.:	Project	: Name:	Tria	l Pit I	Vo.:
	ԿԸ _Ո		19-135			ne Level Crossings	X	215-	TP04
	uge		Co-ord		Client:	l Éireann / Irish Rail	Sł	neet 1	L of 1
Method:			55350	1.42 E		s Representative:	Sca	le:	 1:20
Excavation			61476	7.21 N	JACOBS	•			
Plant:			Groun	d Level:	Date:		Driv	er:	<u></u>
Kobelco SK14	40SRu		93.9	0 mOD		19/02/2020		ger:	MN
Depth (m)	Sample / Tes	ts Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
Depth		HVP=68, HVR=24 Rapid inflow - Rose to 0.90m.	Level	Depth (m)	Logond		Water		
				-					-
				-					-
				-					-
				-					3.5 —
				 -					_
				-					=
				-					-
				_					-
				-					
Remarks						water strikes.	bility		
						Struck at (m): Remarks:	es col	lapsin	g
						1.00 Rapid inflow - Rose	idth:	1	1.70
							ngth:		3.90

			Project	: No.:	Project	: Name:	Tri	al Pit	No.:
	Կ Ը_/		19-135			ne Level Crossings	X	C215	-TP05
	Dge	O	Co-ord		Client:		S	heet	1 of 1
Method:		<u> </u>	55350	1.82 E		l Éireann / Irish Rail s Representative:	Sca	ماه٠	1:20
Excavation			61485	5.46 N	JACOBS	•			
Plant:			Ground	d Level:	Date:		Dri	ver:	TS
Kobelco SK14	10SRu			4 mOD	19/02/2020			gger:	MN
Depth (m)	Sample / Test	s Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.05	ES1		94.74	(0.30) - (0.30) - 0.30		TOPSOIL: Soft greyish brown slightly sandy silty CLAY with frequent rootlets, moist.			-
0.40 0.50 0.50 - 1.00 0.50 - 1.00	ES2 B3 D4	HVP=73, HVR=25	94.74	- (0.80)	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Firm light brown and orange brown slightly sandy slightly gravelly silty CLAY with low cobble content, and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to rounded. Cobbles are angular to rounded.			0.5
1.00 1.10 - 1.60 1.10 - 1.60 1.10	ES5 B6 D7	HVP=25, HVR=12	93.94	- - - 1.10		Soft reddish brown sandy gravelly silty CLAY with low cobble content, moist becoming wet by 1.3m. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular,			1.0
				- (0.60) -	X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sandstone and siltstone.			1.5
1.70 - 2.20 1.70 - 2.20	B8 D9	Rapid inflow - Rose to 1.7m.	93.34	1.70 - 1.70 (0.50)		Brown clayey silty becoming slightly silty very sandy GRAVEL with low to medium cobble content and low boulder content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are mostly subangular, sandstone and siltstone.	~		2.0
			92.84	- 2.20		End of trial pit at 2.200m			- - -
				- - - - -					2.5 —
				- - - -					3.0 —
				- - - -					-
				-					3.5 —
Remarks				-			bility	<i>,</i> .	
nemdiks						Struck at (m): Remarks: bell 1.80 Rapid inflow - Rose	es co ow 1	llapsi .7m	
Trial Pit termir	nated at 2.20m	due to pit walls collapsin	g.				idth: ngth		0.80 3.60

			Project	: No.:	Project	: Name:	Tri	al Pit	:No.:
) <u>C</u> /\		19-135			ne Level Crossings)	(C215	5-TP06
	Dge		Co-ord		Client:		9	Sheet	1 of 1
Method:			55350	4.67 E		l Éireann / Irish Rail s Representative:		ale:	1:20
Excavation			61495	5.90 N	JACOBS	•			
Plant:			Ground	d Level:	Date:		Dr	iver:	TS
Kobelco SK14	10SRu		95.7	4 mOD	19/02/	19/02/2020		gger:	MN
Depth (m)	Sample / Test	s Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.05	ES1		95.44	- (0.30)	β	TOPSOIL: Soft greyish brown slightly sandy silty CLAY with frequent rootlets, moist. Firm light brown and orange brown slightly sandy slightly gravelly silty			-
0.40 0.50 0.50 - 1.00 0.50 - 1.00	ES2 B3 D4	HVP=60, HVR=24		- (1.10)		CLAY with low cobble content and occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular, sandstone and siltstone.			0.5 —
1.00	ES5		0424		\$ 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_		1.0
1.50 - 2.00 1.50 - 2.00	B6 D7		94.34	- 1.40 - - - (0.30)	0. vo.	Brown clayey silty very sandy GRAVEL with medium cobble content and low boulder content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are angular to subrounded.			1.5 —
		Rapid inflow - Rose to 1.4m	94.04	1.70		Brown slightly silty very sandy GRAVEL with medium cobble content and low boulder content, wet. Sand is fine to coarse. Gravel is angular to subrounded. Cobbles and boulders are angular to subangular, sandstone and siltstone.			2.0 —
			93.64	2.10		End of trial pit at 2.100m			- - -
				-					2.5 —
				-					3.0 —
				- - - -					3.5 —
				- - - - - -					- - -
							\perp		
Remarks	•		ı	•		Struck at (m): Remarks: be	elow 1	ollapsi L.4m	
Trial Pit termin	nated at 2.10m (due to pit walls collapsin	g.				Vidth ength		0.90 3.30

		*		Project	No.:	Projec	t Name:	Tri	al Pit	No.:
	C]	19-135		Cork Li	ne Level Crossings	×	C215	5-TP07
		Dge	O	Co-ord	inates:	Client:		5	heet	1 of 1
Metho	4·			55351	6.77 E		d Éireann / Irish Rail s Representative:	-	ale:	1:20
Excavat				61507	5.58 N	JACOB:				
Plant:				Ground	d Level:	Date:		Dr	iver:	TS
Kobelco	SK140	OSRu			9 mOD	19/02/	2020	Lo	gger:	MN
De _l (n		Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water		
0.05	,	ES1		(moz)			TOPSOIL: Soft greyish brown slightly sandy silty CLAY with frequent rootlets, moist.	-		_
				96.04	(0.25) - 0.25					-
					(0.15)	X_X	Firm light brown mottled orange brown slightly sandy silty CLAY with occasional rootlets, moist.			-
0.40 - 0.8 0.40 - 0.8		B2 D3		95.89	0.40	<u> </u>	Stiff light grey with a little orange brown mottling slightly gravelly slightly sandy silty CLAY with low cobble content, occasional rootlets, moist. Sand			_
0.50 0.50		ES4	HVP=53, HVR=21		(0.40)	× × ·	is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular, sandstone and siltstone.			0.5 —
				95.49	0.80	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Stiff orange brown slightly sandy becoming sandy gravelly silty CLAY with			-
0.90 - 1.4 0.90 - 1.4 1.00		B5 D6 ES7			-		low cobble content, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular, sandstone and siltstone.			1.0
					-	**************************************				-
			Decid inflam. No size		- (0.80)	× × 0		_		-
			Rapid inflow - No rise		-	* <u>×</u>				_
					- - -					1.5 —
1.60 - 2.1 1.60 - 2.1		B8 D9		94.69	- 1.60 -	0 0 0 0 0	Soft greyish brown and orange brown mottled clayey silty very sandy GRAVEL with medium cobble and low boulder content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and	,		-
					(0.50)	0 0 0 0 0 0 0 0	boulders are angular to subangular, sandstone and siltstone.			-
2.10 - 2.4	40	B10		94.19	2.10	0.0	David Ship Ship Ship Ship Ship Ship Ship Ship			2.0 —
2.10 - 2.4	40	D11			(0.30)		Brown slightly silty very sandy GRAVEL with medium cobble and low boulder content, wet. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are angular to subangular, sandstone and siltstone.			-
				93.89	2.40	0 0 0	End of trial pit at 2.400m			-
					- -					2.5 —
										_
					[
										_
					-					3.0
					<u>-</u>					-
					-					_
					-					_
					[-
										3.5 —
					_					_
					-					_
					_					-
								\perp	L	
Remark	s						water strikes.	abilit	-	
							Struck at (m): Remarks:	des co	ollapsi	ng
								/idth		1.10
Trial Pit	termina	ited at 2.40m	due to pit walls collapsin	g.			Le	ength	:	2.80

	8		Project	No.:	Project	: Name:			Ti	rial Pit No.:
O			19-135		Cork Li	ne Level Crossings				XC215-TP08
	Dge	O	Co-ord		Client:					Sheet 1 of 1
No able a de		<u> </u>	55354	3.07 L		l Éireann / Irish Rail				
Method: Excavation			61517	3.05 N	JACOBS	Representative:			50	cale: 1:20
Plant:			Ground	l Level:	Date:)			D	river: TS
Kobelco SK140	SRu				18/02/	2020			Lo	ogger: MN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water	
0.05	ES1		(11102)	-		TOPSOIL: Soft dark brown sandy	y silty CLAY with fre	quent rootlets, mois		
				(0.35)						-
				- (0.55)						-
			97.48	- - 0.35		Firm light brown with a little ora	ange brown mottlin	a cliabtly arayally car	ndv	-
				-		silty CLAY with low cobble conte	ent and occasional	ootlets, moist. Sand	is	-
0.50 0.50 - 1.00	ES2 B3			-	×	fine to coarse. Gravel is fine to cangular to subangular.	coarse, angular to s	ubangular. Cobbles a	re	0.5
0.50 - 1.00 0.60	D4	HVP=41, HVR=18		-	×					-
0.75				-	×-0					-
				- (1.00)	× × × 0					
1.00	ES5				<u>~~~</u>					1.0
1.00	E35				<u> </u>					1.0
					× × 0					_
					× × 0					_
1.40 - 1.80	B6	Rapid inflow - No rise	96.48	1.35	0.*0	Brown slightly silty very sandy 6	GRAVEL with mediu	m cobble and low		_
1.40 - 1.80	D7			-	$\overset{\circ}{\circ}\overset{\circ}{\circ}$	boulder content, wet. Sand is finangular to subrounded. Cobbles			e	1.5 —
				(0.45)	$\tilde{\mathbb{Q}}_{0}^{\times}$ o:	and siltstone.	s and sounders are t	abangalah samaston		_
				_	O_{Λ}^{\prime}					_
			96.03	- 1.80	Ŏ, Ŏ					_
				-		End o	f trial pit at 1.800m			_
				-						2.0
				-						_
				-						_
				-						-
				-						-
				-						2.5 —
				-						-
										_
										-
										-
				_						3.0
				-						-
				-						-
				-						-
				-						-
				-						3.5 —
				-						-
				-						-
				-						
				-						
Remarks							\A/a&c	Strikos:	Stabili	ty:
	ents engineer t	to terminate TP at 1.80m	to minin	nise impact	to farme	er.				collapsing
							Struck at (m): 1.35	Remarks: Rapid inflow - No		
								rise	Width	
									Lengt	h: 4.90

			Project	: No.:	Project	Name:			Tria	al Pit I	No.:
0			19-135		Cork Li	ne Level Crossings			Х	C215-	TP09
	bae		Co-ord	inates:	Client:				ς	heet 1	of 1
	90		55347	8.44 E	Iarnród	Éireann / Irish Rail			_	ilect 1	. 01 1
Method:			C1E22	C C2 N	Client's	Representative:			Sca	le: í	1:20
Excavation			61522	0.02 IV	JACOBS				Dri	ver:	ΓS
Plant:					Date:						
Kobelco SK140	SRu				18/02/	2020			_	ger:	VIN
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)	Legend		Description		Water		
0.05	ES1			-		TOPSOIL: Soft dark brown slight	ly gravelly sandy si	lty CLAY with frequent			
				(0.35)		rootlets, moist.					
				- (0.33)							
0.35 - 0.60	B2		96.40	- - 0.35							-
0.35 - 0.60	D3		30.10	-	××.	Soft dark brown sandy gravelly occasional rootlets. Sand is fine					-
0.50	ES4			(0.25)	××.	to subrounded.					0.5
0.60 - 1.10	B5		96.15	0.60		Brown slightly clayey silty very s	sandy GRAVEL with	medium cobble content			_
0.60 - 1.10	D6			-		and low boulder content, wet. S	Sand is fine to coars	e. Gravel is fine to			_
		Rapid inflow - Rose to 0.5m		-		coarse, angular to subrounded. sandstone and siltstone.	Cobbles and bould	ers are subangular,			_
				- (0.50)	0 0 0 8 0 8 8						
1.00	ES7			-	0 × 0 × θ						1.0
1.00	L37		05.65	- 110	- 20 20 20 20 20 20 20 20 20 20 20 20 20 2						1.0
			95.65	- 1.10 -		End o	f trial pit at 1.100m				
				-							
				-							_
				-							-
				-							1.5
				-							-
				-							_
				-							_
				-							_
				-							2.0
				-							
				-							
				_							
				-							
				-							
				-							2.5 —
				-							=
				-							-
				_							-
				_							-
				-							3.0
				-							_
				-							_
				- -							_
				-							
				_							3.5 —
				_							5.5
				-							
				-							
				- -							
				-							-
Remarks Instructed by clie	ents engineer t	to terminate TP at 1.10m	to minin	nise impact	to farme	or .	Water		ability		
	cribilicel	atc 11 dt 1.10111		oc impact	.5 IGITITE	***	Struck at (m):	Remarks:	ies co	llapsin	g
							0.75	Rapid inflow - Rose to 0.5m	/idth:	1	.80
								Le	ngth:		1.60

Appendix E Trial Pit Photographs

		T.PIT1
		Trial Pit Photographs
`	Client:	Iarnród Éireann
	Engineer:	Jacob's

	1.7111
	Trial Pit Photographs
Client:	Iarnród Éireann
Engineer:	Jacob's

	T.PIT1
	Trial Pit Photographs
3	larnród Éireann
	Jacob's

T.PIT1
Trial Pit Photographs
Client:
larnród Éireann

February 2020

Engineer:

Jacob's

	1.P111
	Trial Pit Photographs
Client:	Iarnród Éireann
Engineer:	<u> </u>

Jacob's
February 2020

T.PIT1
Trial Pit Photographs

Client:

larnród Éireann

Engineer:

Jacob's

Date: February 2020

9	T.PIT1
	Trial Pit Photographs
	larnród Éireann
	Jacob's

	T.PIT2
	Trial Pit Photographs
Client:	larnród Éireann
Engineer:	Jacob's

Date: February 2020

	Engineer:	lacoh's
3	Client:	Iarnród Éireann
		Trial Pit Photographs
		1.PH2

	T.PIT2
	Trial Pit Photographs
S	larnród Éireann
	Iacob's

	T.PIT2
	Trial Pit Photographs
Client:	Iarnród Éireann
Engineer:	lacob's

		T.PIT2
		Trial Pit Photographs
•	Client:	Iarnród Éireann
	Engineer:	lacob's

		1.PH2
		Trial Pit Photographs
s	Client:	larnród Éireann
	Engineer:	Jacob's

oc bgeo

larnród Éireann Cork Line Level Crossings XC215 (19-135-4) T.PIT2

Trial Pit Photographs

larnród Éireann

Engineer:

Jacob's

T.PIT2

Trial Pit Photographs

larnród Éireann

Engineer:

Jacob's

	T.PIT2
	Trial Pit Photographs
Client	larnród Éireann
Engin	Jacob's